General-Purpose AC Servo

MELSERVO-HSeries

Equivalatent to CC-Link MR-H TN Servo Amplifier Instruction Manual

Safety Instructions

(Always read these instructions before using the equipment.)

Do not attempt to install, operate, maintain or inspect the servo amplifier and servo motor until you have read through this Instruction Manual, Installation guide, Servo motor Instruction Manual and appended documents carefully and can use the equipment correctly. Do not use the servo amplifier and servo motor until you have a full knowledge of the equipment, safety information and instructions.

In this Instruction Manual, the safety instruction levels are classified into "WARNING" and "CAUTION".

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

Indicates that incorrect handling may cause hazardous conditions, resulting in medium or slight injury to personnel or may cause physical damage.

Note that the CAUTION level may lead to a serious consequence according to conditions. Please follow the instructions of both levels because they are important to personnel safety.

What must not be done and what must be done are indicated by the following diagrammatic symbols:

: Indicates what must not be done. For example, "No Fire" is indicated by 😿 .

: Indicates what must be done. For example, grounding is indicated by 🛄

In this Instruction Manual, instructions at a lower level than the above, instructions for other functions, and so on are classified into "POINT".

After reading this installation guide, always keep it accessible to the operator.

1. To prevent electric shock, note the following:

⚠ WARNING		
 Before wiring or inspection, switch power off and wait for more than 10 minutes. Then, confirm the voltage is safe with voltage tester. Otherwise, you may get an electric shock. 		
 Connect the servo amplifier and servo motor to ground. 		
 Any person who is involved in wiring and inspection should be fully competent to do the work. 		
 Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you may get an electric shock. 		
 Operate the switches with dry hand to prevent an electric shock. 		
 The cables should not be damaged, stressed loaded, or pinched. Otherwise, you may get an electric shock. 		
 During power-on or operation, do not open the front cover. You may get an electric shock. 		
 Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging area are exposed and you may get an electric shock. 		
 Except for wiring or periodic inspection, do not remove the front cover even if the power is off. The servo amplifier is charged and you may get an electric shock. 		
2. To prevent fire, note the following:		
▲ CAUTION		

- Do not install the servo amplifier, servo motor and regenerative brake resistor on or near combustibles. Otherwise a fire may cause.
- When the servo amplifier has become faulty, switch off the main servo amplifier power side. Continuous flow of a large current may cause a fire.
- When a regenerative brake resistor is used, use an alarm signal to switch main power off. Otherwise, a regenerative brake transistor fault or the like may overheat the regenerative brake resistor, causing a fire.

3. To prevent injury, note the follow

- Only the voltage specified in the Instruction Manual should be applied to each terminal, Otherwise, a burst, damage, etc. may occur.
- Connect the terminals correctly to prevent a burst, damage, etc.
- Ensure that polarity (+,-) is correct. Otherwise, a burst, damage, etc. may occur.
- During power-on or for some time after power-off, do not touch or close a parts (cable etc.) to the servo amplifier heat sink, regenerative brake resistor, servo motor, etc. Their temperatures may be high and you may get burnt or parts may damaged.

4. Additional instructions

The following instructions should also be fully noted. Incorrect handling may cause a fault, injury, electric shock, etc.

(1) Transportation and installation

▲ CAUTION					
 Transport the Use the eye-b the condition t Stacking in ex Do not carry tf Do not hold th Install the service The servo am Leave specifice equipment. Do not install of missing. Do not block tf Provide adequi matter from er Do not drop or Use the servo 	products cc olt of the se co have insta cess of the ne motor by e front cove /o amplifier or stand on se plifier and se clearance or operate t he intake/ep uate protect netring the serv amplifier and	prrectly according to their we ervo motor to only transport alled a servo motor on the specified number of produ- of the cables, shaft or encoder of transport the servo and in a load-bearing place in servo equipment. Do not p ervo motor must be installed es between the servo ampli- he servo amplifier and serve whaust port of the servo motor ion to prevent screws and servo amplifier. To amplifier or servo motor. and servo motor under the f	veights. t the servo m machine. licts is not allo der. nplifier. The s accordance v out heavy obje ed in the spe lifier and con vo motor which botor which ha other conduct Isolate from following envi	otor and do not on the servo amplified with the Instru- ects on equipicified direction of the sector	not use it to transport in er may drop. uction Manual. ment. m. e walls or other damaged or has any parts an. bil and other combustible ads. onditions:
F actions			Conc	litions	
Environ	iment	Servo amplifie	r		Servo motor
Ambient	[°C]	0 to +55 (non-freezing)		0 to +40 (non	-freezing)
temperature	[°F]	32 to 131 (non-freezing)		32 to 104 (no	on-freezing)
Ambient humid	lity	90%RH or less (non-conde	nsing)	80%RH or le	ss (non-condensing)
Storage	[°C]	-20 to +65 (non-freezing)		-15 to +70 (non-freezing)
temperature	[°F]	-4 to 149 (non-freezing)		5 to 158 (nor	-freezing)
Storage humid	ity	90%RH or less (non-conde	nsing)		
Ambience Indoors (no direct sunlight) Free from corrosive gas, flammable gas, oil mist, dust and dirt				nmable gas, oil mist, dust	
Altitude		Max. 1000m (3280 ft.) abov	/e sea level		
			HC-MF HA-FF HC-UF	Series Series 13 to 73	X • Y: 19.6
	[m/s ²]	n/s ²] 5.9 {0.6G} or less	HC-SF 5 HC-SF 5 HC-SF 5 HC-UF	SF 81 52 to 152 53 to 153 72 • 152	X: 9.8 Y: 24.5
			HC-SF 1 HC-SF 2 HC-SF 2 HC-U	21 201 202 352 203 353 F 202	X: 19.6 Y: 49
Vibration			HC-S	F 301	X: 11.7 Y: 29.4
Vibration	[ft./s ²] 19.4 or less	ft./s ²] 19.4 or less	HC-MF HA-FF HC-UF	Series Series 13 to 73	X • Y: 64
			HC-SF 5 HC-SF 5 HC-SF 5 HC-UF	SF 81 52 to 152 53 to 153 72 • 152	X: 32 Y: 80
			HC-SF 1 HC-SF 2 HC-SF 2 HC-U	21 • 201 202 • 352 203 • 353 F 202	X: 64 Y: 161
		HC-S	F 301	X: 38 Y: 96	

- Securely attach the servo motor to the machine. If attach insecurely, the servo motor may come off during operation.
- The servo motor with reduction gear must be installed in the specified direction to prevent oil leakage.
- For safety of personnel, always cover rotating and moving parts.
- Never hit the servo motor or shaft, especially when coupling the servo motor to the machine. The encoder may become faulty.
- Do not subject the servo motor shaft to more than the permissible load. Otherwise, the shaft may break.
- When the equipment has been stored for an extended period of time, consult Mitsubishi.

(2) Wiring

- Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate.
- Do not install a power capacitor, surge absorber or radio noise filter (FR-BIF option) between the servo motor and servo amplifier.
- Connect the output terminals (U, V, W) correctly. Otherwise, the servo motor will operate improperly.
- Do not connect AC power directly to the servo motor. Otherwise, a fault may occur.
- The surge absorbing diode installed on the DC output signal relay must be wired in the specified direction. Otherwise, the forced stop and other protective circuits may not operate.

(3) Test run adjustment

 Before operation, check the parameter settings. Improper settings may cause some machines to perform unexpected operation.

• The parameter settings must not be changed excessively. Operation will be insatiable.

(4) Usage

CAUTION Provide an external forced stop circuit to ensure that operation can be stopped and power switched off immediately. Any person who is involved in disassembly and repair should be fully competent to do the work. The STOP key of the parameter unit is only valid for test run. Provide a forced stop key independently of the STOP key. Before resetting an alarm, make sure that the run signal is off to prevent an accident. A sudden restart is made if an alarm is reset with the run signal on. Do not modify the equipment. • Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be caused by electronic equipment used near the servo amplifier. Use the servo amplifier with the specified servo motor. • The electromagnetic brake on the servo motor is designed to hold the motor shaft and should not be used for ordinary braking. For such reasons as service life and mechanical structure (e.g. where a ballscrew and the servo motor are coupled via a timing belt), the electromagnetic brake may not hold the motor shaft. To ensure safety, install a stopper on the machine side. (5) Corrective actions CAUTION • When it is assumed that a hazardous condition may take place at the occur due to a power failure or a product fault, use a servo motor with electromagnetic brake or an external brake mechanism for the purpose of prevention. · Configure the electromagnetic brake circuit so that it is activated not only by the servo amplifier signals but also by an external forced stop signal.

- When any alarm has occurred, eliminate its cause, ensure safety, and deactivate the alarm before restarting operation.
- When power is restored after an instantaneous power failure, keep away from the machine because the machine may be restarted suddenly (design the machine so that it is secured against hazard if restarted).

(6) Maintenance, inspection and parts replacement

• With age, the electrolytic capacitor will deteriorate. To prevent a secondary accident due to a fault, it is recommended to replace the electrolytic capacitor every 10 years when used in general environment. Please consult our sales representative.

(7) Disposal

• Dispose of the product as general industrial waste.

(8) General instruction

• To illustrate details, the equipment in the diagrams of this Instruction Manual may have been drawn without covers and safety guards. When the equipment is operated, the covers and safety guards must be installed as specified. Operation must be performed in accordance with this Instruction Manual.

COMPLIANCE WITH EC DIRECTIVES

The EN Standard-compliant products are scheduled for release.

CONFORMANCE WITH UL/C-UL STANDARD

The UL/C-UL Standard-compliant products are scheduled for release.

About the Manuals

This Instruction Manual and the MELSERVO Servo Motor Instruction Manual are required if you use the CC-link Compatible AC servo MR-H-TN for the first time. Always purchase them and use the MR-H-TN safely.

Relevant manuals

Manual name	Manual No.
MELSERVO-H-Series To Use the AC Servo Safety	IB(NA)67367
MELSERVO Servo Motor Instruction Manual	SH(NA)3181
EMC Installation Guidelines	IB(NA)67310

CONTENTS

1. FUNCTIONS AND CONFIGURATION	1-1 to 1-16
1.1 Overview	1- 1
1.1.1 Features	1-1
1.1.2 Features of the servo section	1- 2
1.1.3 Function block diagram	1- 3
1.1.4 System configuration	1- 5
1.2 Standard specifications	1- 9
1.3 Function list	1-10
1.4 Model name make-up	1-11
1.5 Combination with servo motor	1-12
1.6 Parts identification	1-13
1.6.1 MR-H350TN or less	1-13
1.6.2 MR-H500TN to MR-H700TN	1-14
1.6.3 MR-H11KTN or more	1-15
1.7 Servo system with auxiliary equipment	1-16

2. INSTALLATION

2.1 Environmental conditions	2-	1
2.2 Installation direction and clearances	2-	2
2.3 Keep out foreign materials	2-	2
2.4 Cable stress	2-	3

3. CC-LINK COMMUNICATION FUNCTIONS

3.1 Communication specifications	3-1
3.2 System configuration	3-2
3.2.1 Configuration example	3- 2
3.2.2 Wiring method	3- 3
3.2.3 Station number setting	3- 5
3.2.4 Communication baudrate setting	3- 6
3.2.5 Occupied station count setting	3- 6
3.3 Functions	3-7
3.3.1 Function block diagram	3-7
3.3.2 Functions	3-7
3.4 Servo amplifier setting	3- 8
3.4.1 Servo amplifier side operation modes	3- 8
3.4.2 Operation mode changing	3- 8
3.5 I/O Signals transferred to/from the PLC CPU	3- 9
3.5.1 I/O signals	3- 9
3.5.2 Detailed explanation of I/O signals	3-13
3.5.3 Monitor codes	3-29
3.5.4 Instruction codes (RWw2 • RWw3)	
3.5.5 Answer codes (RWR2)	3-40
3.5.6 Setting the CN1 external input signals	3-41

3-1 to 3-64

2-1 to 2-4

3.6 Data communication timing charts	
3.6.1 Monitor codes	
3.6.2 Instruction codes	
3.6.3 Position and speed commands	
3.7 Function-by-function programming examples	
3.7.1 System configuration example	
3.7.2 Master station parameter setting	
3.7.3 Reading the servo amplifier status	
3.7.4 Writing the operation commands	
3.7.5 Reading the data	
3.7.6 Writing the data	
3.7.7 Operation	
3.8 Continuous operation program example	
3.8.1 System configuration example	
3.8.2 Program example	

4-1 to 4-58

4. POSITIONING SYSTEM

5. ROLL FEEDING SYSTEM 5-1 to 5-38

5.1 Roll feeding system specifications	1
--	---

5.2 Standard connection example	
5.2.1 In factory-shipped status	
5.2.2 Input signals assigned to CN1	
5.3 I/O connectors	
5.3.1 Connector signal layouts	
5.3.2 Signal explanations	
5.3.3 Control input/output signals	5-10
5.4 When switching power on for the first time	
5.4.1 Pre-operation checks	5-16
5.4.2 Startup	5-17
5.5 Manual operation remote mode	
5.5.1 Jog operation	
5.5.2 Manual pulse generator operation	
5.6 Manual operation mode	
5.6.1 JOG operation	
5.6.2 Stepped operation	
5.6.3 Manual pulse generator operation	
5.7 Automatic operation mode	5-25
5.7.1 Roll feeding operation according to point table	
5.7.2 Roll feeding operation according to position command data	
5.8 How to set the point table data from the parameter unit	

6. WIRINGS

6-1 to 6-22

6.1 Internal connection diagram of servo amplifier	
6.2 Interfaces	
6.2.1 Common line	
6.2.2 Detailed description of the interfaces	
6.3 Power line circuit	
6.3.1 Connection example	
6.3.2 The explanation of signals	
6.3.3 Power-on sequence	
6.4 Connection of servo amplifier and servo motor	
6.4.1 Connection instructions	
6.4.2 Connection diagram with the servo motor	
6.4.3 Details of the servo motor side	
6.4.4 Servo motor fan (HA-LH11K2 to HA-LH22K2)	
6.5 Servo motor with electromagnetic brake	
6.5.1 Wiring instructions	
6.5.2 Operation of electromagnetic brake	
6.6 Grounding	
6.7 Alarm occurrence timing chart	

7. PARAMETERS

7-1 to 7-24

7.1 Parameter list	- 1
7.1.1 Parameter write inhibit	- 1
7.1.2 Lists	- 2
7.2 Detailed explanation	20

7.2.1 Electronic gear	7-20
7.2.2 Changing the status display screen	7-21
7.2.3 Analog output	7-22
7.2.4 Changing the stopping pattern at the forward/reverse stroke end	7-23
7.2.5 Rough match output	7-23
7.2.6 Low acoustic noise mode	7-24

8. PARAMETER UNIT AND DISPLAY SECTION

8-1 to 8-18

8.1 Parameter unit keys
8.2 Operation of the parameter unit
8.3 Status display
8.4 Alarm/diagnosis
8.5 Servo amplifier display
8.5.1 Display examples
8.5.2 Selection of display data
8.6 Test operation mode
8.6.1 JOG operation
8.6.2 Positioning operation
8.6.3 1-step feed operation
8.6.4 Motorless operation
8.6.5 DO forced output

9. ADJUSTMENT

9-1 to 9-10

9.1 What is gain adjustment?	
9.1.1 Difference between servo amplifier and other drives	
9.1.2 Basics of the servo system	
9.2 Gain adjustment	
9.2.1 Parameters required for gain adjustment	
9.2.2 Block diagram	
9.2.3 What is auto tuning?	
9.3 Gain adjustment by auto tuning	
9.3.1 Adjustment method	
9.3.2 Valid conditions	
9.4 Manual gain adjustment	
9.4.1 When machine rigidity is low	
9.4.2 When the machine vibrates due to machine resonance frequency	
9.4.3 Load inertia moment is 20 or more times	
9.4.4 When shortening the settling time	
9.4.5 When the same gain is used for two or more axes	

10. INSPECTION

10-	1	to	1	0-	2
-----	---	----	---	----	---

10.1 Inspection	
11. TROUBLESHOOTING	11- 1 to 11-12
11.1 Trouble at start-up	

11.2 Operation performed at alarm/warning occurrence	
11.3 CC-Link communication alarm	
11.4 At occurrence of alarm or warning	
11.4.1 Alarm/warning list	
11.4.2 Remedies for alarms	
11.4.3 Remedies for warnings	
11.4.4 RS-232C communication error	
11.5 Clearing the alarm history	
12. OUTLINE DIMENSIONAL DRAWINGS	12- 1 to 12- 8
12.1 Serve amplifiers	19 1
12.1 Serve amplifiers	12-1 12-6
	12-0
13. CHARACTERISTICS	13- 1 to 13- 8
13.1 Overload protection characteristics	
13.2 Servo amplifier and generated loss	
13.3 Dynamic brake characteristics	
13.4 Encoder cable flexing life	
14. OPTIONS AND AUXILIARY EQUIPMENT	14- 1 to 14-52
14.1 Options	
14.1.1 Parameter unit	
14.1.2 Regenerative brake options	
14.1.3 Brake unit	
14.1.4 Power return converter	
14.1.5 External dynamic brake	
14.1.6 Cables and connectors	
14.1.7 Junction terminal block (MR-TB50)	
14.1.8 Servo configuration software	
14.1.9 Heat sink outside mounting attachment (MR-ACN)	
14.1.10 Large setting/display unit (MR-PRU02)	
14.1.11 External digital display (MR-DP60)	
14.1.12 Manual pulse generator (MR-HDP01)	
14.1.13 Battery (MR-BAT, A6BAT)	
14.2 Auxiliary equipment	
14.2.1 Recommended wires	
14.2.2 No-fuse breakers, magnetic contactors	
14.2.3 Power factor improving reactors	
14.2.4 Relays	
14.2.5 Surge absorbers	
14.2.6 Noise reduction techniques	
14.2.7 Leakage current breaker	
14.2.8 Setting potentiometers for analog inputs	
15. RS-232C COMMUNICATION FUNCTIONS	15- 1 to 15-38

15.2 Communication specifications	
15.3 Protocol	
15.4 Character codes	
15.5 Error codes	
15.6 Checksum	
15.7 Time-out operation	
15.8 Retry operation	
15.9 Initialization	
15.10 Communication procedure example	
15.11 Command and data No. list	
15.11.1 Read commands	
15.11.2 Write commands	15-14
15.12 Detailed explanations of commands	
15.12.1 Data processing	
15.12.2 Status display	
15.12.3 Parameters	15-21
15.12.4 External I/O signal status (DIO diagnosis)	15-23
15.12.5 External output signal ON/OFF (DO forced output)	
15.12.6 External input signal ON/OFF	
15.12.7 Disable/enable of external I/O signals (DIO)	
15.12.8 Test operation mode	
15.12.9 Alarm history	
15.12.10 Current alarm	
15.12.11 Position block	15-35
15.12.12 Speed block	
15.12.13 Selection between Japanese and English	

16. COMPLIANCE WITH THE EUROPEAN EC DIRECTIVES AND UL/C-UL STANDARD 16-1 to 16-14

16.1 Compliance with EC directives16-116.1.1 What are EC directives?16-116.1.2 For compliance16-116.1.3 Standard connection examples16-516.2 Conformance with UL/C-UL standard16-916.2.1 Servo amplifier and servo motor used16-916.2.2 Installation16-916.2.3 Power supply16-916.2.4 Crimping terminals and crimping tools16-1016.2.5 Fuses16-1016.2.6 Terminal block tightening torque16-1016.3 Signals16-1116.3.1 Main circuit terminal block16-1116.3.2 Interfaces16-11

App.- 1 to App.- 6

Appendix 1 Point table data recording forms	App	1
Appendix 2 Joint terminal block (MR-TB50) terminal block labels	App	5

APPENDICES

Optional Servo Motor Instruction Manual CONTENTS

The rough table of contents of the optional MELSERVO Servo Motor Instruction Manual is introduced here for your reference. Note that the contents of the Servo Motor Instruction Manual are not included in the Servo Amplifier Instruction Manual.

1. INTRODUCTION

2. INSTALLATION

3. CONNECTORS USED FOR SERVO MOTOR WIRING

4. INSPECTION

5. SPECIFICATIONS

6. CHARACTERISTICS

7. OUTLINE DIMENSION DRAWINGS

MEMO

1. FUNCTIONS AND CONFIGURATION

1.1 Overview

Based on the MR-H□ACN servo amplifier having positioning functions, the MR-H□TN CC-Link-compatible servo amplifier further includes CC-Link communication functions. Up to 42 axes of servo amplifiers can be controlled/monitored from the PLC side.

As a servo unit, this model has the same functions as those of the MR-H \Box ACN servo amplifier having positioning functions. It allows you to perform positioning operation by merely setting the position data (target positions), motor speeds, acceleration/deceleration time constants, etc. in point tables (position blocks, speed blocks) like making parameter setting. It is the most appropriate for you to configure up a simple positioning system without programs or simplify your system.

The servo motors with absolute position encoders are available. By simply adding a battery to the servo amplifier, you can make up an absolute position detection system and you need not perform zeroing at power-on, alarm occurrence or the like.

1.1.1 Features

(1) Fast communication

Fast communication can be made by cyclic transmission of not only bit data but also word data.

- (a) The highest communication speed is 10Mbps.
- (b) The broadcast polling system ensures as high as 3.9ms to 6.7ms even at the maximum link scan (10Mbps).
- (2) Variable communication speed/distance system

Selection of speed/distance allows use in a wide range of areas from a system requiring high speed to a system requiring long distance.

(3) System fault prevention (station separating function)

Because of connection in the bus system, any remote or local station that has become faulty due to power-off or the like does not affect communications with normal remote and local stations. In addition, use of the two-piece terminal block allows the unit to be changed during data link.

(4) Factory Automation compatible

As the remote device stations of CC-Link, the servo amplifiers share a link system and can be controlled/monitored with PLC user programs.

From the PLC side, the running speed, acceleration/deceleration time constant and other settings of servo motors can be changed/checked and the servo motors started and stopped.

1.1.2 Features of the servo section

(1) Positioning system

(a) Main functions

- 1) Positioning for up to 256 positions using point table numbers. (When 1 station is occupied: 8 points, when 2 stations are occupied: 256 points)
- 2) Speed can be specified as desired from among up to 8 speeds.
- 3) Direct designation of position data can also be made externally (only when 2 stations are occupied).
- 4) Direct designation of speed data can also be made externally (only when 2 stations are occupied).
- 5) Easily compatible with an absolute position system.
- 6) Four zeroing methods

(b) Configuration example

Point table

Position Block

Position	Position	Maada	Speed	
block No.	data	IVI COUE	block No.	
0	120000	00	1	
1	485690	11	3	
2	120000	19	8	_
3	986723	55	2	
		:	•	
7(255)	120000	01	1	

Speed	Block
-------	-------

	•			
	Speed	Speed	Acceleration	Deceleration
	block No.	time	time	
Ν	1	500.0	220	220
\backslash	2	1200.0	46	50
	3	1750.0	65	80
/	4	1892.0	66	76
	5	48.3	23	23
	6	3000.0	72	72
	7	123.4	125	298
	8	2396.9	99	333

(2) Roll feeding system

(a) Main functions

- 1) Frequently repeated positioning
- 2) Two different feed distances can be specified externally as desired.
- 3) Direct designation of feed distance can also be made externally (when 2 stations are occupied).
- 4) Speed can be specified freely from among up to 8 speeds (when 1 station is occupied: 2 points, when 2 stations are occupied: 8 points).
- 5) Direct designation of speed can also be made externally (when 2 stations are occupied).

Automatia mada		Position data setting
Automatic mode		External feed distance command
Manual mode		Manual pulse generator
Manual mode		JOG feed

(b) Configuration example

1.1.3 Function block diagram

The function block diagram of this servo amplifier is shown on the next page.

Note1. For 11kw or more.

2. The built-in regenerative brake resistor is not provided for the MR-H20TN or less.

1.1.4 System configuration

This section provides operations using the MR-H□TN.

Use of CC-Link enables you to freely configure any system from a single-axis system to an up to 42-axis system. Further, you can assign external input signals to the pins of the connector CN by setting parameter No. 66. (Refer to Section 3.5.)

Data for operation are made up of the following point tables:

Position block

Item	Setting range	(Note1) Unit
Position data	— 999999 to 999999	imes 0.001 [mm] imes 0.01 [mm] imes 0.1 [mm] imes 1 [mm]
(Note3) M code	(Note4) 0 to 3	_
(Note3) Speed block No.	1 to 8	_

Speed block

Item	Setting range	(Note1) Unit
Motor speed	0 to max. speed	[r/min]
(Note2) Acceleration time constant	0 to 20000	[ms]
(Note 2) Deceleration time constant	0 to 20000	[ms]

Note1. Using parameter No. 4, the unit can be changed to [inch].

2. When S-pattern acceleration/deceleration is selected in parameter No. 3, the acceleration time constant in Item changes to the acceleration/deceleration time constant and the deceleration time constant changes to the S-pattern time constant.

3. Not provided for the roll feeding mode.

4. Any of 00 to 99 can be set for CC-Link operation when 2 stations are occupied.

The following table indicates the number of points that may be set in the position and speed blocks.

	Number of points							
Point table	Positioning system			Roll feeding system				
	When CN1	When CC-Link i	nput signals are	When CN1	When CC-Link i	nput signals are		
	external input	used to	specify	external input	used to specify			
	signals are	1 station	2 stations	signals are	1 station	2 stations		
	used to specify	occupied	occupied	used to specify	occupied	occupied		
Position block	8 (No.0 to 7)	8 (No.0 to 7)	256 (No.0 to 255)	2 (No.0 • 1)	2 (No.0 • 1)	2 (No.0 • 1)		
Speed block	8 (No.1 to 8)	8 (No.1 to 8)	8 (No.1 to 8)	2 (No.1 • 2)	2 (No.1 2)	8 (No.1 to 8)		

- (1) Operation using CC-Link communication functions
 - (a) Operation

All signals can be controlled by CC-Link communication. Also, each point table setting, point table selection, parameter value change, setting, monitor, servo motor operation and others can be performed.

(b) Configuration

Note: Use as required.

- (2) Operation using CN1 external input signals and CC-Link
 - (a) Operation

Using parameter No. 66, you can assign the input signals as CN1 external input signals. The signals assigned as the CN1 external input signals cannot be used with the CC-Link communication functions. The output signals can be used with both the CN1 connector and CC-Link communication functions.

(b) Configuration

Note: Use as required.

- (3) Operation not using CC-Link communication functions
 - (a) Operation

The following configuration example uses all signals as the CN1 external input signals and does not use the CC-Link communication functions. Using parameter No. 66, assign the signals as CN1 external input signals.

(b) Configuration

Note: Use as required.

1.2 Standard specifications

	Servo amplifier MR-H□TN	10	20	40	60	100	200	350	500	700	11K	15K	22K
Item	Voltage/frequency		3	3-phase	200 to 2	230VAC	50/60H	Iz		3-phase	200 to 2	20VAC,	50Hz
Power	Permissible voltage fluctuation		3-phase 200 to 230VAC, 60Hz 3-phase 170 to 253VAC, 50/60Hz 3-phase 170 to 253VAC, 60Hz							50Hz 60Hz			
supply	Permissible frequency fluctuation		Within ±5%										
	Power supply capacity		Given in Section 13.2										
System					Sine-w	vave PW	'M contr	ol, curr	ent conti	rol syster	n		
Dynamic	brake					Built-i	n					Option	
Protectiv	e functions	Overcurrent shut-off, regenerative overvoltage shut-off, overload shut-off (electronic therm relay), servo motor overheat protection, encoder fault protection, regenerative fault protection undervoltage, instantaneous power failure protection, overspeed protection, excessive error protection					hermal otection, e error						
Speed fre	equency response	250Hz or more											
Torque li	mit input	0 to ±10VDC/max. current (individual commands for forward rotation and reverse rotation input impedance 10 to 12kΩ)					tation,						
Electroni	A/B times A • B:1 to 50000 1/50 < A/B < 50												
Error exc	cessive						±80	k pulse					
CC-Link function	communication	Given in Section 3.1											
Positioni specificat	ng system tions						Given ir	n Section	n 4.1				
Roll Feed specificat	ling system tions						Given ir	n Section	n 5.1				
Absolute specificat	position detection tions						Given ir	n Section	n 4.9				
Structure	e						Ope	n (IP00))				
	Ambient temperature					0 to	+55 [°C] (non-fi	reezing)	<u> </u>			
	Ambient humidity					90%RI	+131 [F = (11011 - c)	ndonsin))			
	storage temperature					-20	to +65 [C] (non	-freezing	() ()			
Environ	storago humidity					00%PI	$\frac{1}{1}$ or \log	F (non-co	-meezing	() ()			
ment						July Inde	ors (no	direct s	unlight)	ig)			
	Ambient	Free from corrosive gas, flammable gas, oil mist, dust and dirt											
	Altitude	Max. 1000m (3280ft.) above sea level											
	Vibration	5.9 [m/s2] or less											
	[kø]	2.1	2.1	2.1	2.1	2.4	44	44	7 በ	12.0	21	27	30
Weight	[lb]	4.63	4.63	4.63	4.63	5.291	9.7	9.7	15.432	26.455	46.297	59.525	66.139

1.3 Function list

The functions of the servo amplifier are listed below. For more information on each function, refer to the corresponding chapter or section given in Detailed Explanation.

Function	Description	Refer to
Positioning by automatic	Operation is performed according to the values preset to the selected	Chapter 4
operation	position blocks (travels, M codes, speed block Nos.) and speed blocks	
	(speeds, acceleration time constants, deceleration time constants).	
	Select the position blocks from the PLC link or external DI signals.	
	When 1 station is occupied: 8 position blocks, 8 speed blocks	
	When 2 stations are occupied: 256 position blocks, 8 speed blocks	
Roll feeding by	Operation is performed according to the values preset to the selected	Chapter 5
automatic operation	position blocks (travels) and speed blocks (speeds, acceleration time	
	constants, deceleration time constants).	
	Select the position blocks from the PLC link or external DI signals.	
	When 1 station is occupied: 2 position blocks, 2 speed blocks	
	When 2 stations are occupied: 2 position blocks, 8 speed blocks	
Manual zeroing	Dog type, count type, data setting type, stopper type, home position	Section 4.7
	ignored	
Automatic positioning to	Automatic return to home position.	Section 4.8
home position		
CC-Link operation	CC-Link communication functions allow up to 48 axes of MR-H-TN to	Chapter 3
	be controlled simultaneously.	
Absolute position	Zeroing per power-on is not needed by merely setting the home	Section 4.9
detection system	position once.	-
Electronic gear	The electronic gear is used to make adjustment until the servo	Parameter No. 5, 6
	amplifier setting matches the machine travel. Also, changing the	
	electronic gear setting allows the machine to be moved at any	
	multiplying factor to the travel in the servo amplifier.	
Real-time auto tuning	Automatic adjustment is made to set the optimum servo gains every	Section 9.3
Managal states a disaster cost	Crime a start/stop is made.	Centing 0.4
Manuai gain aujustment	Gains can be adjusted manually if real-time auto tuning failed to	Section 9.4
S nottom	Acceleration/deceleration can be made smoothly	Section 4 6
s-pattern	Acceleration/deceleration can be made smoothry.	Section 5.6
time constant		Section 5.0
Analog monitor output	The serve status is output in terms of voltage in real time	Section 6.2.3
Alarm history	Light the parameter unit or Serve Configuration software, the alarm	Section 7.4
Alarministory	Nos of the currently occurring alarm and 10 past alarms are stored	Section 7.4
	and displayed	
I/O signal selection	Parameter setting enables the signals used in PLC link to be assigned	Section 3.5.6
1/O signal selection	to the connector pins as I/O signals	5000000000
Torque limit	The torque generated by the servo motor is limited	Section 3.3.3
rorque mine	Parameter \times 2 limit values	Section 4.3.3
	Analog input \times 1 limit value	
Override (speed limit)	The servo motor speed is limited by analog input.	Section 3.3.3
	Speed can be changed at the ratio of 0 to 200% to the preset speed.	Section 4.3.3
Status display	The servo status is displayed. Up to 16 different statuses can be shown	Section 8.3
1 J	on the servo amplifier display and parameter unit.	
Test operation mode	JOG operation, positioning operation, motor-less operation, DO forced	Section 8.6
	output, 1-step feed	
Limit switch	The forward rotation stroke end (RY4)/reverse rotation stroke end	Section 7.2.4
	(RY5) can be used to set the moving region of the servo motor.	

1.4 Model name make-up

(1) Name plate

(2) Model

-Rated output

Symbol	Rated output (kW)	Symbol	Rated output (kW)
10	0.1	350	3.5
20	0.2	500	5
40	0.4	700	7
60	0.6	11K	11
100	1	15K	15
200	2	22K	22

1.5 Combination with servo motor

The following table lists combinations of servo amplifier and servo motors. The same combinations apply to the models with electromagnetic brakes, the models with reduction gears, the EN Standard-compliant models and the UL/C-UL Standard-compliant models. For combination with the HA-MH, HA-FH, HA-SH and HA-UH series servo motors, refer to parameter No. 1 in Section 6.1.2 (2).

	Servo motor							
Servo amplifier	(Note)			HC-SF□				
	HC-KF□			1000r/min	2000r/min	3000r/min		
MR-H10TN	053 • 13		053 • 13					
MR-H20TN	23	053 • 13	23					
MR-H40TN	43	23	33 • 43					
MR-H60TN		43	63		52	53		
MR-H100TN		73		81	102	103		
MR-H200TN				121 • 201	152 • 202	153 • 203		
MR-H350TN				301	352	353		
MR-H500TN					502			
MR-H700TN					702			

Note. When using the HC-KF series servo motor, contact us because the servo amplifier used is a special product.

	Servo motor					
Servo amplifier		HC-				
		2000r/min	3000r/min			
MR-H10TN			13			
MR-H20TN						
MR-H40TN			23			
MR-H60TN			43	52		
MR-H100TN		72	73			
MR-H200TN	103 • 153	152		102 • 152		
MR-H350TN	203	202		202		
MR-H500TN	353 • 503	352 • 502		302 • 502		
MR-H700TN				702		
MR-H11KTN				11K2		
MR-H15KTN				15K2		
MR-H22KTN				22K2		

1.6 Parts identification

1.6.1 MR-H350TN or less

1.6.2 MR-H500TN to MR-H700TN

1.6.3 MR-H11KTN or more

1.7 Servo system with auxiliary equipment

Note: 1. Required when using the HC-FF or HC-UF 3000r/min servo motor. 2. Depends on the servo amplifier capacity. Refer to Section 12.1.

2. INSTALLATION

	 Stacking in excess of the limited number of products is not allowed.
	 Install the equipment to incombustibles. Installing them directly or close to
	combustibles will led to a fire.
	 Install the equipment in a load-bearing place in accordance with this Instruction
	Manual.
	 Do not get on or put heavy load on the equipment to prevent injury.
	 Use the equipment within the specified environmental condition range.
CAUTION	 Provide an adequate protection to prevent screws, metallic detritus and other
	conductive matter or oil and other combustible matter from entering the servo amplifier.
	 Do not block the intake/exhaust ports of the servo amplifier. Otherwise, a fault may occur.
	 Do not subject the servo amplifier to drop impact or shock loads as they are precision equipment.
	 Do not install or operate a faulty servo amplifier.
	 When the product has been stored for an extended period of time, consult
	Mitsubishi.

2.1 Environmental conditions

Environment	Conditions			
Ambient	0 to +55 [°C] (non-freezing)			
Ambient temperature	32 to +131 [°F] (non-freezing)			
Ambient humidity	90%RH or less (non-condensing)			
Stone de temperature	-20 to +65 [°C] (non-freezing)			
Storage temperature	-4 to +149 [°F] (non-freezing)			
Storage humidity	90%RH or less (non-condensing)			
Ambient	Indoors (no direct sunlight)			
Ambient	Free from corrosive gas, flammable gas, oil mist, dust and dirt			
Altitude	Max. 1000m (3280 ft.) above sea level			
Vibration	5.9 [m/s^2] or less			
VIDI ALIOII	19.4 $[ft./s^2]$ or less			

2.2 Installation direction and clearances

	 Do not hold the front cover to transport the servo amplifier. You may drop the servo amplifier and get injured.
	The equipment must be installed in the specified direction. Otherwise, a fault may
	occur.
	 Leave specified clearances between the servo amplifier and control box inside
	walls or other equipment. Otherwise, a fault may occur.

(1) Installation of one servo amplifier

(2) Installation of two or more servo amplifiers

Leave a large clearance between the top of the servo amplifier and the internal surface of the control box, and install a fan to prevent the internal temperature of the control box from exceeding the environmental conditions.

Reserve an at least 10mm (0.394 in.) clearance between the servo amplifiers. For the MR-H10TN to MR-H60TN, reserve an at least 15mm (0.591 in.) clearance as a wiring space.

(3) Others

When using heat generating equipment such as the regenerative brake option, install them with full consideration of heat generation so that the servo amplifier is not affected. Install the servo amplifier on a perpendicular wall in the correct vertical direction.

- 2.3 Keep out foreign materials
- (1) When installing the unit in a control box, prevent drill chips and wire fragments from entering the servo amplifier.
- (2) Prevent oil, water, metallic dust, etc. from entering the servo amplifier through openings in the control box or a fan installed on the ceiling.
- (3) When installing the control box in a place where there are toxic gas, dirt and dust, provide positive pressure in the control box by forcing in clean air to prevent such materials from entering the control box.

- 2.4 Cable stress
- (1) The way of clamping the cable must be fully examined so that flexing stress and cable's own weight stress are not applied to the cable connection.
- (2) In any application where the servo motor moves, the cables should be free from excessive stress. For use in any application where the servo moves, run the cables so that their flexing portions fall within the optional encoder cable range. Fix the encoder cable and power cable of the servo motor.
- (3) Avoid any probability that the cable sheath might be cut by sharp chips, rubbed by a machine corner or stamped by workers or vehicles.
- (4) For installation on a machine where the servo motor will move, the flexing radius should be made as large as possible. Refer to section 13.4 for the flexing life.

MEMO

3. CC-LINK COMMUNICATION FUNCTIONS

3.1 Communication specifications

POINT • The MR-H□TN servo amplifier is equivalent to a remote device station.

For details of the PLC side specifications, refer to the CC-Link system master module manual.

Item				Specifications
	Applicable CPU card			QnA(H), QnAS(H), A1S, A1SH, AnUS(H), AnN, AnA, AnU(H)
PLC side master station	Communication speed			10M/5M/2.5M/625k/156kbps
	Communication system			Broadcast polling system
	Synchronization system			Frame synchronization system
	Transmission path format			Bus format (conforming to EIA RS485)
	Transmission format			Conforming to HDLC
	Remote station number			1 to 64
	(Note) Max. transmission distance	Communication speed		156k to 10Mbps
		Overall distance		1200 to 50m (3934.426 to 163.934ft.)
		Interstation distance	Between master/local station and preceding/ subsequent station	2m (6.557ft.) or more
			Between remote I/O stations/ remote device stations	30cm (0.984ft.) or more (depends on communication speed)
	Error control system			CRC
	Connection cable			Twisted pair cable (3-wire type)
Number of servo amplifiers connected			d	Max. 42 (see Section 3.2.3)

Note. Depends on the cable used. For more information, refer to the CC-Link system master/local module user's manual.
3.2 System configuration

3.2.1 Configuration example

(1) PLC side

Fit "Type AJ61BT11", "Type A1SJ61BT", "Type AJ61QBT11" or "Type A1SJ61QBT" "Control & Communication Link system master/local module" to the main or extension base unit which is loaded with the PLC CPU used as the master station.

(2) Wiring

Connect the PLC CC-Link module master station and servo amplifier by a twisted pair cable (3-wire type).

(3) For the CPU having the automatic refresh function (Example: QnA series CPU)

Transfer of data to/from the corresponding devices is performed from a sequence ladder and the devices are automatically refreshed by the refresh buffer of the master station at the END instruction to make communications with the remote devices.

(4) For the CPU having no automatic refresh function (Example: AnA series CPU)

Transfer of data to/from the refresh buffer of the master station is performed directly from a sequence ladder to make communications with the remote devices.

3.2.2 Wiring method

(1) Connection example

The servo amplifier and PLC CC-Link master module are wired as shown below. Refer to Section 14.2.1 (3) for the twisted pair cable used for connection.

(2) Example of connecting multiple servo units

As the remote I/O stations of CC-Link, servo amplifiers share the link system and can be controlled/monitored using PLC user programs.

- Note 1. Use the termination resistor supplied with the PLC. The resistance of the termination resistor depends on the cable used. For details, refer to the open field network CC-Link catalog (L(NA)74108143).
 - 2. Refer to this section (4).

(3) How to wire the CC-Link terminal block (TE5)

(a) Strip the sheath of the cable and separate the internal wires and braided shield.

(b) Strip the sheaths of the braided shield and internal wires and twist the cores.

- (c) Match and twist the wires and braided shield of the cable connected to the preceding axis or PLC and the corresponding wires and braided shield of the cable connected to the subsequent axis.
- (d) For the last axis, work the termination resistor supplied to the CC-Link module as shown below.

(e) Insert the core of the cable into the opening and tighten it with a flat-blade screwdriver so that it will not come off. (Tightening torque: 0.5 to $0.6N \cdot m$) When inserting the wire into the opening, make sure that the terminal screw is fully loose.

3.2.3 Station number setting

(1) How to number the stations

Set the servo station numbers before powering on the servo amplifiers. Note the following points when setting the station numbers:

- (a) Station numbers may be set within the range 1 to 64.
- (b) One servo amplifier occupies 1 or 2 stations. (One station of PLC remote device station)
- (c) Max. number of connected units: 42
 - Note that the following conditions must be satisfied:
 - $\{(1\times a) + (2\times B) + (3\times d) + (4\times d)\} \leq 64$
 - a: Number of 1-station occupying units
 - b: Number of 2-station occupying units

c: Number of 3-station occupying units (not available for MR-H-TN)

- d: Number of 4-station occupying units (not available for MR-H-TN)
- $\{(16 \times A) + (54 \times B) + (88 \times C)\} \le 2304$
- A: Number of remote I/O stations ≤ 64
- B: Number of remote device stations ≤ 42
- C: Number of local stations ≤ 26

(d) When the number of units connected is 4, station numbers can be set as shown below:

Number of connected units is 4.

(2) Station number setting method

Set the station number with the station number switches (SW3, SW4) on the servo amplifier front. The station number that may be set is any of 1 to 64 in decimal. In the initial status, the station number is set to station 1.

3.2.4 Communication baudrate setting

Set the transfer baudrate of CC-Link with the transfer baudrate switch (SW2) on the servo amplifier front. The initial value is set to 156kbps.

The overall distance of the system changes with the transfer speed setting. For details, refer to the CC-Link system master/local module user's manual.

3.2.5 Occupied station count setting

Set the number of occupied stations with the occupied station count switch (SW1) on the servo amplifier front. The usable I/O signals and the number of connectable units change with the set number of occupied stations. Refer to Section 3.5 and Section 3.2.3. In the initial status, the number of stations occupied is set to 1.

SW1 setting		Number of occupied stations
OFF CInitial value)		1 station occupied
	FF N	2 stations occupied

- 3.3 Functions
- 3.3.1 Function block diagram

This section explains the transfer of I/O data to/from the servo amplifier in PLC link, using function blocks.

- (1) Between the master station and servo amplifier in the CC-Link system, link refresh is normally performed at intervals of 3.5 to 18ms (512 points). The link scan time of link refresh changes with the communication speed. For details, refer to the CC-Link system master/local module user's manual.
- (2) The I/O refresh and master station sequence program are executed asynchronously. Some PLCs allow link scans to be synchronized with PLC scans.
- (3) The FROM instruction from the buffer memory of the CC-Link system master/local module is used to read data from the servo amplifier, and the TO instruction is used to write data. Some PLCs allow automatic refresh to be set to omit the FROM and TO instructions.

3.3.2 Functions

The following table lists the functions that may be performed from the PLC in the CC-Link system in the CC-Link operation mode or parameter unit test operation mode.

ltom	Operation mode			
item	CC-Link operation mode	Parameter unit test operation mode		
Monitor	0	0		
Operation	0			
Parameter write	0	0		
Parameter read	0	0		
Position block data write	0	0		
Position block data read	0	0		
Speed block data write	0	0		
Speed block data read	0	0		
Alarm deactivation	(Note 1) O	(Note 2)		

Note 1. CC-Link-related alarm cannot be deactivated.

2. Occurrence of an alarm automatically causes the servo amplifier to leave the test operation mode and therefore the alarm cannot be deactivated in the CC-Link system.

3.4 Servo amplifier setting

3.4.1 Servo amplifier side operation modes

The MR-H-TN servo amplifier has the following operation modes:

Operation mode	Description
CC-Link operation mode	CC-Link communication functions are used to operate the servo with the PLC programs.
Parameter unit test operation	The parameter unit (MR-PRU01A) keys are operated to test-run the servo.
mode	

3.4.2 Operation mode changing

(1) Operation mode changing conditions

Change the operation mode after making sure that:

(a) The servo motor is at a stop.

(b) The forward rotation start (RYA) or reverse rotation start (RYB) is "0" (OFF).

(2) Operation mode changing method

Change with parameter unit

CC-Link	A	Paramotor unit toot
CO-EIIIR		Falameter unit test
operation mode		operation mode
	В	

Symbol	Changing	Description
А	CC-Link operation mode \downarrow Parameter unit test operation mode	Select the test operation mode with the parameter unit.
В	Parameter unit test operation mode \downarrow CC-Link operation mode	Deselect the test operation mode with the parameter unit.

- 3.5 I/O Signals transferred to/from the PLC CPU
- 3.5.1 I/O signals
- (1) Positioning system

The input signals may be used as either the CC-Link or CN1 external input signals. Make selection in parameter No. 66. The output signals can be used as both the CC-Link and CN1 external input signals.

POINT

• In the factory-shipped status, the forward rotation stroke end (LSP), reverse rotation stroke end (LSN) and proximity dog (DOG) are valid as the CN1 external input signals.

(a) When 1 station is occupied RX/RY: 32 points each, RWR/W: 4 points each

$PLC \rightarrow Servo amplifier (RY)$			Servo amplifier \rightarrow PLC (RX)					
Device No.	Signal name	Signal abbreviation	External input CN1	D	evice No.	Signal name	Signal abbreviation	External input CN1
RY0	Servo on	SON	12		RX0	Ready	RD	49
RY1	Position block number selection bit0	DI0	13		RX1	In position	INP	24
RY2	Position block number selection bit1	DI1	14		RX2	Rough match	СРО	23
RY3	Position block number selection bit2	DI2	15		RX3	Zeroing completion	ZP	25
RY4	Forward rotation stroke end	LSP	38		RX4	M code bit0	МСО	(Note1) 23
RY5	Reverse rotation stroke end	LSN	39		RX5	M code bit1	MC1	(Note1) 24
RY6	Proximity dog	DOG	37		RX6	Alarm code bit0	AC0	
RY7	Automatic operation/ manual drive mode	MD0	41		RX7	Alarm code bit1	AC1	
RY8	Temporary stop	STP	42		RX8	Alarm code bit2	AC2	
RY9	Zeroing	ORG	43		RX9	Alarm code bit3	AC3	
RYA	Forward rotation start	ST1	44		RXA	Limiting torque	TLC	(Note2) 23
RYB	Reverse rotation start	ST2	45		RXB	Electromagnetic brake inter lock	MBR	(Note3) 23
RYC	Monitor output execution demand	MOR			RXC	Monitoring	MOF	
RYD	Instruction code execution demand	COR			RXD	Instruction code execution completion	COF	
RYE	Torque limit selection	TL			RXE	Warning	WNG	
RYF to RY19				RX	F to RX19			
RY1A	Reset	RES			RX1A	Trouble	ALM	48
RY1B to					RX1B	Remote bureau communication ready	CRD	
KIIF				I	RX1C to RX1F			

Note 1. When using this signal as an external output signal, make M code valid in the setting of parameter No. 44.

- 3. When using this signal as an external output signal, make Electromagnetic brake interlock valid in the setting of parameter No. 3.

$PLC \rightarrow Servo amplifier (RWw)$			
Address No.	s No. Signal name		
RWwo	Monitor 1		
RWw1	Monitor 2		
RWw2	Instruction code		
RWw3	Writing data		

Servo amplifier \rightarrow PLC (RW _R)			
Address No.	Signal name		
RW _{R0}	Monitor 1 data		
RW _{R1}	Monitor 2 data		
RW _{R2}	Answer code		
RW _{R3}	Reading data		

(b) When 2 stations are occupied

RX/RY: 32 points each (possible to extend to 64 points), RWRW: 8 points each

	PLC \rightarrow Servo amplifier (RY)				
Device No.	Signal name	Signal abbreviation	External input CN1		
RY0	Servo on	SON	12		
RY1	Position block number selection bit0	DI0	13		
RY2	Position block number selection bit1	DI1	14		
RY3	Position block number selection bit2	DI2	15		
RY4	Forward rotation stroke end	LSP	38		
RY5	Reverse rotation stroke end	LSN	39		
RY6	Proximity dog	DOG	37		
RY7	Automatic operation/ manual drive mode	MD0	41		
RY8	Temporary stop	STP	42		
RY9	Zeroing	ORG	43		
RYA	Forward rotation start	ST1	44		
RYB	Reverse rotation start	ST2	45		
RYC	Monitor output execution demand	MOR			
RYD	Instruction code execution demand	COR			
RYE	Torque limit selection	TL			
RYF					
RY10	Position instruction demand	PSR			
RY11	Speed instruction demand	SPR			
RY12	Override selection	OVR			
RY13	Manual pulse generator magnification selection bit0	HP0			
RY14	Manual pulse generator magnification selection bit1	HP1			
RY15 to RY39					
RY3A	Reset	RES			
RY19 to RY3F					

	Ĩ		
	Servo amplifier —	→ PLC (RX)	
Device No.	Signal name	Signal abbreviation	External input CN1
RX0	Ready	RD	49
RX1	In position	INP	24
RX2	Rough match	СРО	23
RX3	Zeroing completion	ZP	25
RX4			
RX5			
RX6	Alarm code bit0	AC0	
RX7	Alarm code bit1	AC1	
RX8	Alarm code bit2	AC2	
RX9	Alarm code bit3	AC3	
RXA	Limiting torque	TLC	(Note1) 23
RXB	Electromagnetic brake inter lock	MBR	(Note2) 23
RXC	Monitoring	MOF	
RXD	Instruction code execution completion	COF	
RXE	Warning	WNG	
RXF			
RX10	Position instruction execution completion	PSF	
RX11	Speed instruction execution completion	SPF	
RX12 to RX39			
RX3A	Trouble	ALM	48
RX3B	Remote bureau communication ready	CRD	
DV19 to DV9E		\sim	

Note 1. When using this signal as an external output signal, make Limiting torque valid in the setting of parameter No. 44.

2. When using this signal as an external output signal, make Electromagnetic brake interlock valid in the setting of parameter No. 3.

$PLC \rightarrow Servo amplifier (RWw)$		
Address No.	Signal name	
RWwo	Monitor 1	
RWw1	Monitor 2	
RWw2	Instruction code	
RWw3	Writing data	
DWhite	Position block No./Position instruction data under	
K VV W4	16bit	
RWw5	Position instruction data upper 16bit	
RWw6	Speed block No./Speed instruction data	
RWw7		

Servo amplifier \rightarrow PLC (RWR)			
Address No.	Signal name		
RW _{R0}	Monitor 1 data under 16bit		
RW _{R1}	Monitor 1 data upper 16bit		
RWR2	Answer code		
RW R3	Reading data		
RWR4	M code output		
RW _{R5}	Monitor 2 data under 16bit		
RW _{R6}	Monitor 2 data upper 16bit		
RW _{R7}			

(1) Roll feeding system

The input signals may be used as either the CC-Link or CN1 external input signals. Make selection in parameter No. 66. The output signals can be used as both the CC-Link and CN1 external input signals.

(a) When 1 station is occupied

RX/RY: 32 points each, RWR/W: 4 points each

$PLC \rightarrow Servo amplifier (RY)$					Servo amplifier \rightarrow PLC (RX)				
Device No.	Signal name	Signal abbreviation	External input CN1		Device No.	Signal name	Signal abbreviation	External input CN1	
RY0	Servo on	SON	12		RX0	Ready	RD	49	
RY1	Restart	DEC	13		RX1	In position	INP	24	
RY2	Speed selection	JFS	14		RX2	Rough match	СРО	23	
RY3	Temporary stop	STP	15	ĺ	RX3				
RY4	Torque limit selection	TL	38		RX4				
RY5	Second feed distance	PS2	39		RX5				
RY6	Clear	CR	37		RX6	Alarm code bit0	AC0		
RY7	Automatic operation selection	MD0	41		RX7	Alarm code bit1	AC1		
RY8	Manual operation selection	MD1	42		RX8	Alarm code bit2	AC2		
RY9	Remote manual operation selection	MD2	43		RX9	Alarm code bit3	AC3		
RYA	Forward rotation start	ST1	44		RXA	Limiting torque	TLC	(Note1) 23	
RYB	Reverse rotation start	ST2	45		RXB	Electromagnetic brake inter lock	MBR	(Note2) 23	
RYC	Monitor output execution demand	MOR			RXC	Monitoring	MOF		
RYD	Instruction code execution demand	COR			RXD	Instruction code execution completion	COF		
RYE					RXE	Warning	WNG		
RYF to RY19					RXF to RX19				
RY1A	Reset	RES			RX1A	Trouble	ALM	48	
RY1B to					RX1B	Remote bureau communication ready	CRD		
RY1F					RX1C to RX1F				

Note 1. When using this signal as an external output signal, make Limiting torque valid in the setting of parameter No. 44.

2. When using this signal as an external output signal, make Electromagnetic brake interlock valid in the setting of parameter No. 3.

$PLC \rightarrow Servo amplifier (RWw)$						
Address No.	Address No. Signal name					
RWwo	Monitor 1					
RWw1	Monitor 2					
RWw2	Instruction code					
RWw3	Writing data					

Servo amplifier \rightarrow PLC (RW _R)					
Address No.	Signal name				
RW _{R0}	Monitor 1 data				
RW _{R1}	Monitor 2 data				
RW _{R2}	Answer code				
RW _{R3}	Reading data				

(b) When 2 stations are occupied

RX/RY: 32 points each (possible to extend to 64 points), RWR/W: 8 points each

PLC \rightarrow Servo amplifier (RY)				Servo amplifier \rightarrow PLC (RX)				
Device No.	Signal name	Signal abbreviation	External input CN1	Device No.	Signal name	Signal abbreviation	External input CN1	
RY0	Servo on	SON	12	RX0	Ready	RD	49	
RY1	Restart	DEC	13	RX1	In position	INP	24	
RY2	Speed selection	JFS	14	RX2	Rough match	СРО	23	
RY3	Temporary stop	STP	15	RX3				
RY4	Torque limit selection	TL	38	RX4				
RY5	Second feed distance	PS2	39	RX5				
RY6	Clear	CR	37	RX6	Alarm code bit0	AC0		
RY7	Automatic operation selection	MD0	41	RX7	Alarm code bit1	AC1		
RY8	Manual operation selection	MD1	42	RX8	Alarm code bit2	AC2		
RY9	Remote manual operation selection	MD2	43	RX9	Alarm code bit3	AC3		
RYA	Forward rotation start	ST1	44	RXA	Limiting torque	TLC	(Note1) 23	
RYB	Reverse rotation start	ST2	45	RXB	Electromagnetic brake inter lock	MBR	(Note2) 23	
RYC	Monitor output execution demand	MOR		RXC	Monitoring	MOF		
RYD	Instruction code execution demand	COR		RXD	Instruction code execution completion	COF		
RYE				RXE	Warning	WNG		
RYF				RXF				
RY10				RX10				
RY11	Speed instruction demand	SPR		RX11	Speed instruction execution completion	SPF		
RY12	Override selection	OVR			Ν	Ν	Ν	
RY13	Manual pulse generator magnification selection bit0	HP0		RX12 to				
RY14	Manual pulse generator magnification selection bit1	HP1		RX39				
RY15 to RY39	Deget	DEC		DVOA	Trouble		49	
K I JA	reset	KES		КАЗА	I rouble	ALM	48	
RY3B to RY3F				RX3B	Remote bureau communication ready	CRD		
				RX3C to RX3F				

3 - 12

- Note 1. When using this signal as an external output signal, make Limiting torque valid in the setting of parameter No. 44.
 - 2. When using this signal as an external output signal, make Electromagnetic brake interlock valid in the setting of parameter No. 3.

$PLC \rightarrow Servo amplifier (RWw)$					
Address No. Signal name					
RWwo	Monitor 1				
RWw1	Monitor 2				
RWw2	Instruction code				
RWw3	Writing data				
RWw4	Position instruction data under 16bit				
RWw5	Position instruction data upper 16bit				
RWw6	Speed block No./Speed instruction data				
RWw7					

Servo amplifier \rightarrow PLC (RW _R)					
Address No. Signal name					
RW _{R0}	Monitor 1 data under 16bit				
RW _{R1}	Monitor 1 data upper 16bit				
RW _{R2}	Answer code				
RW _{R3}	Reading data				
RW _{R4}					
RW _{R5}	Monitor 2 data under 16bit				
RW _{R6}	Monitor 2 data upper 16bit				
RW _{R7}					

3.5.2 Detailed explanation of I/O signals

POINT

• ON/OFF in the explanation of the signals indicates the status when the I/O signals are used as the CN1 external signals. ON of the input signal indicates that the corresponding pin and SG are shorted, and OFF indicates that they are opened. ON of the output signal indicates that the corresponding pin and SG conduct and OFF indicates that they do not conduct.

(1) Positioning system

(a) Input signals

The I/O Input CN1 field indicates the pin number that may be assigned to the CN1 connector when the signal is used as the CN1 external input signal. The signal whose Device No. field has an oblique line cannot be used in CC-Link.

					Devid	1/O in a st	
Signal name		Desc	ription		1 station	2 stations	
					occupied	occupied	CNT
Servo on	Turning RY() to "1" (C	ON) powers	on the base	RY0	RY0	12
	circuit, makir	ng operation	n ready to sta	art.			
	Turning it to	"0" (OFF) p	owers off th	e base circuit,			
	coasting the s	servo motor.					
Position block number	RY1, RY2 ar	nd RY3 are	combined	to choose the	RY1		13
selection bit0	position block	s No.					
Position block number	(Note) Input signal			RY2		14	
selection bit1				Position block No			L
Position block number	RY3	RY2	RY1	DIOCK NO.	RY3	\land	15
selection bit2	0	0	0	0		$ \rangle$	
	0	0	1	1			
	0	1	0	2			
	0	1	1	3			
	1	0	0	4			
	1	0	1	5			
	1	1	0	6			
	1	1	1	7			
	Note. 0: OFF	1: ON					

				Devic		
Signal name	Description			1 station	2 stations	I/O input
			onpue	occupied	occupied	CN1
Forward rotation stroke	In the factor	v-shipped s	tatus. the forward rotation	RY4	RY4	38
end	stroke end i	s valid as	the external input signal			
Reverse rotation stroke end	(CN1-38) an	d the rever	rse rotation stroke end is	RY5	RY5	39
	valid as the e	external inp	out signal (CN1-39).			
	When startin	ng operation	n, short CN1-38 - SG and			
	CN1-39 - SG	. Opening t	hem causes a sudden stop,			
	resulting in s	servo lock.				
	For use in C	C-Link, ma	ake it usable in parameter			
	No. 66.	·				
	When starti	ng operatio	on, turn KY4/KY5 to 1			
	(UN). Turim	ng it to u	(OFF) causes a sudden			
	When not	ig iii servor using the	forward/reverse rotation			
	stroke end.	set "Auto	matic ON internally" in			
	parameter N	0. 42.	Junite Ort			
	(Nioto) In		Operation			
	1	1				
	0	1				
	1	1 0				
	0	0				
	Note 0: OFF	1· ON				
		1. 0.1		DV0	DV0	
Proximity dog	In the factor	y-shipped s	tatus, the proximity dog is	KY6	Rid	37
	use in CC-L	ink make i	t usable in parameter No.			
	66.		t ususio in parameter			
	Parameter	No Q (No	to) Polarity of provimity dog detection			
		N0.9 (0			
	1 [] (Init	ial value)	1			
	Note. 0: OFF 1:	ON				
Automatic	RY7 and RY	9 are combi	ned to choose the	RY7	RY7	41
operation/manual drive	operation mo	ode.				
mode	(Note) In	nut signal				
			 Operation mode 			
	1	0	Automatic operation mode			
	0	0	Automatic operation mode			
	0	1	Zeroing mode			
	1	1	Automatic positioning			
	Ť	T	mode to home position			
	Note. 0: OFF 1: ON					
Temporary stop	Turning RY8	from "()" ((OFF) to "1" (ON) and	RY8	RY8	42
romportu j seer	keeping it in	that status	for longer than 5ms		**	
	suspends ope	eration. Tur	ming the start signal RYA			
	or RYB from	"0" (OFF) t	o "1" (ON) again resumes			
	operation fro	m where it	stopped.			
Zeroing	Turn RY9 to	"1" (ON) to	o choose the zeroing mode,	RY9	RY9	43
	or to "0" (OF	F) to choose	e the automatic or manual			
	operation mc	ode. (Refer f	(0 RY7.)	1		

	Γ	Devic		
Signal name	Description	1 station	2 stations	I/O input
Oignai naino	Doonpart	occupied	occupied	CN1
Forward rotation start	In immontal value command system			44
Forward rotation start	In incremental value command system Turning this signal to "1" (ON) in the automatic operation mode starts forward rotation. Turning this signal to "1" (ON) in the zeroing mode starts zeroing. Turning this signal to "1" (ON) in the JOG operation mode performs forward rotation while it is shorted. Turning this signal from "0" (OFF) to "1" (ON) during a temporary stop resumes operation over the remaining distance. Forward rotation indicates the address increasing direction. In absolute value command system Turning this signal to "1" (ON) in the automatic operation mode starts operation. Turning this signal to "1" (ON) in the zeroing mode starts zeroing. Turning this signal to "1" (ON) in the JOG operation mode performs forward rotation while it is shorted. Turning this signal from "0" (OFF) to "1" (ON) during a temporary stop resumes operation over the remaining distance. Forward rotation indicates the address increasing direction.	RYA	RYA	44
Reverse rotation start	This signal is used with the incremental value command only. It is not used with the absolute value command. Turning this signal to "1" (ON) in the automatic operation mode starts reverse rotation. Turning this signal to "1" (ON) in the JOG operation mode performs reverse rotation while it is shorted. Turning this signal from "0" (OFF) to "1" (ON) during a temporary stop resumes operation over the remaining distance. Reverse rotation indicates the address decreasing direction.	RYB	RYB	45
Monitor output execution demand	 Turning RYC to "1" (ON) sets the following data/signals. At the same time, RXC turns to "1" (ON). While RYC is "1" (ON), the monitor values are always updated. 1) When 1 station is occupied Remote register RWR0: Data requested by monitor 1 (RWw0) Remote register RWR1: Data requested by monitor 2 (RWw1) Remote register RWR2: Normal or error answer code 2) When 2 stations are occupied Remote register RWR0: Lower 16 bits of data requested by monitor 1 (RWw0) Remote register RWR1: Upper 16 bits of data requested by monitor 1 (RWw0) Remote register RWR1: Upper 16 bits of data requested by monitor 2 (RWw1) Remote register RWR2: Normal or error answer code 2) When 2 stations are occupied Remote register RWR0: Lower 16 bits of data requested by monitor 1 (RWw0) Remote register RWR1: Upper 16 bits of data requested by monitor 2 (RWw2) Remote register RWR6: Upper 16 bits of data requested by monitor 2 (RWw2) Remote register RWR2: Normal or error answer code 	RYC	RYC	

				Devic			
Signal name	Description				1 station	I/O input	
oignaí naine					occupied	2 stations	CN1
T.,	Turning RYD to "1" (ON) executes the processing						
Instruction code execution	Turning F	CYD to I (C	DIN) executes	the processing	RYD	RID	
demand	correspond	ling to the	Instruction	code set to the			
	remote reg	gister RWw2.		1			
	After com	pletion of in	struction co	de execution, a			
	normal or	error answe	code is set	to RWR2. At the			
	same time	, RXD turns	to "1" (ON).				
	Refer to S	ection 3.6.2 f	or details.				
Torque limit selection	Turning I	RYE to "1"	(ON) limits	the generated	RYE	RYE	$\left \right\rangle$
	torque acc	ording to the	e voltage of t	he torque limit			
	command	(TLAP).					
	Turning it	t to "0" (OFF) makes the	parameter No.			
	40 setting	valid.					
Position instruction	Turning F	2Y10 to "1" (ON) sets the	e position block	\land	RY10	\mathbf{N}
demand	No. or pos	sition comma	and data set	to the remote			
	register R	Ww4/RWw5.					
	When it is	set to the se	rvo amplifie	r, the normal or			
	error ans	wer code is	set to RWR	2. At the same			
	time, RX1	0 turns to "1	' (ON).				
	Refer to S	ection 3.6.3 f	or details.				
Speed instruction demand	Turning R	2Y11 to "1" (C	N) sets the	speed block No.	\land	RY11	\mathbf{N}
	or speed c	ommand dat	a set to the	remote register			
	RWw6.						
	When it is	set to the se	rvo amplifie	r, the normal or			
	error ans	wer code is	set to RWR	2. At the same			
	time, RX1	1 turns to "1	' (ON).				
	Refer to S	ection 3.6.3 f	or details.				
Override selection	Used to se	elect whether	the overrid	e (OVR) analog	Ν	RY12	\mathbf{N}
	input sign	al is made va	lid or invali	d.			
	(Noto)	DV12	Croad ab				
	(NOTE)	0	Speed of				
		0	No c	hange			
		1	Override (OVR) setting is valid.			
	Note. 0: OFF	1: ON					
Manual pulse generator	Whon usir	og this signal	sot "□□□	4" in		DV13	``
magnification selection bit	narameter	$\sim No$ 30 to m	, set 🗆 🗆 🗆	ual nulso	$\left \right\rangle$	K115	
magnification selection bito	gaparatar	multiplying	factor colocti	an gignal valid			
	Turning P	V13 and PV	14 to "1" (ON	1)/"0" (OFF)			
	changes th	o multiplyir	a factor of th	0 (011)			
	nulso gong	rator					
Manual pulse generator	puise gene	ator.			DV14		
magnification selection hit1	(Note)	Input signal				10114	$ \rangle$
inaginiteation selection bitt	RV14	RV13	— Multip	olying factor			
	1(114	1(11)					
	0	0		×1			
	0	1		×10			
	1	0	>	<100			
	Note. U: OF	-F 1: ON					
Reset	Keeping t	his signal "1'	(ON) for lo	nger than 20ms	RY1A	RY3A	Ν
	deactivate	s any of the	following al	arms. The base			$ \rangle$
	off while the s	signal is "1" ((ON).				
					$ \rangle$		
	Indication	Name	Indication	Name			
	AL.10	Under voltage	AL.45	Main circuit			$ \rangle$
	AL.24	Ground fault	_	device overheat			
	AL.31	Over speed	AL.46	Servo motor			
	AL.32	Over current		overheat			$ \rangle$
	AL.33	Over voltage	AL.52	Error excessive			
	AL.35	Command puls	e AL.8D	CC-Link alarm			
		frequency alar	n AL.8E	RS-232C alarm			
	AL.42	Feedback alarr	n AL.8F	RS-422 alarm			
					1	1	1 \

		Devic	I/O input	
Signal name	Description	1 station occupied	2 stations occupied	CN1
Forced stop	This signal may be used as the external input signal only. It cannot be used in CC-Link. Opening CN1-46 and SG places the servo amplifier in a forced stop status, causing servo off and operating the dynamic brake to make a sudden stop. Shorting CN1-46 and SG causes the servo amplifier to leave the forced stop status.			46

(b) Output signals

The I/O Input CN1 field indicates the pin number that may be assigned to the CN1 connector when the signal is used as the CN1 external output signal. The device number whose Device No. field has an oblique line cannot be used in CC-Link.

				Devid	1/O in must		
Signal name		Description	1 station	2 stations			
				occupied	occupied	CINT	
Ready	This signal turr amplifier is read after servo-on.	ns to "1" (ON) y to operate wit	when the servo hout any failure	RX0	RX0	49	
In position	This signal turns	to "1" (ON) when	n the droop pulse	RX1	RX1	24	
	value has become	e less than the i	in-position range				
	set in the parame This signal is not off.	eter. t output while tl	ne base circuit is				
Rough match	This signal turns	s to "1" (ON) wh	en the command	RX2	RX2	23	
	remaining distan	nce has become	e less than the				
	rough match outp This signal is not off.	he parameter. ne base circuit is					
Zeroing completion	This signal turns	to "1" (ON) on co	ompletion of	RX3	RX3	25	
	zeroing.						
	In the absolute pe	osition system, tl	nis signal turns				
	to "1" (ON) when	operation is read	ly to start, but it				
	turns to "0" (OFF) if:					
	1) Servo on (RY0)	is turned to "0"	(OFF);				
	2) Forced stop (C	N1-46) is made v	alid;				
	3) Reset (RY1A or	r RY3A) is turne	d to "1" (ON);				
	4) Alarm occurs;	or	•••				
	5) Forward rotati	on stroke end (R ond (RV5) is tur					
M code bit0	The M code is o	$\frac{1}{1}$	nd RX5 in 2 -bit	RX4		23	
M code bit1	hinary	duput to 1074 a		RX5		24	
	5	(11.1.) 0			$\left \right\rangle$		
	M code	(Note) Out	tput signal				
		RX5	RX4				
	0	0	0				
	1	0	1				
	2	1	0				
	Note. 0: OFF 1: ON	Ν					
	When using thes	e signals as the	external output				
	signals, make th	e M code valid	in the setting of				
parameter No. 44.							

					Devic				
Signal name		Description			Description		1 station	2 stations	I/O input
oighar haine		Descriptio			occupied	occupied	CN1		
Alarm codo bit0	The alarm code is	output to	PY6 PY7	PV8 and	PY6	PY6			
Alarm code bit1	RX9 in 4-bit binary	v.	1070, 1071	, 1070 and	RX7	RX7			
Alarm code bit2	Refer to Section 11	.4.1.			RX8	RX8			
Alarm code bit3	1				RX9	RX9			
Limiting torque	This signal turns	to "1" (O	N) when	the torque	RXA	RXA	23		
	limit value set inte	ernally or e	xternally is	s reached.					
	When using this	signal as	the extern	nal output					
	signal, make Limi	ting torque	e valid in t	he setting					
	of parameter No. 4	4.			DVD	DVD			
Electromagnetic brake	The electromagne	etic brake	interlock	signal is	RXB	RXB	23		
Inter lock	output.								
	RXB turns to "0"	" (OFF) at	t servo-off	or alarm					
	occurrence.								
	When using this	signal as	the extern	interlock					
	valid in the setting	of parame	ter No. 3.	IIIterlock					
Monitoring	Refer to Monitor of	utput execu	ution dema	nd.	RXC	RXC			
Instruction code execution	Refer to Instruction	n code exec	ution dema	and.	RXD	RXD			
completion							>		
Warning	RXE turns to "1"	(ON) if a w	varning oco	turs in the	RXE	RXE	Ν		
	servo statuses are	indicated b	elow.	ing to the					
	ber to statuses are	maioacoa b							
	Servo	status	(Note) RX	E					
	Normal st	atus	1						
	Power off		1						
	Warning o	occurrence	0						
	Failure oc	currence	1						
	Servo off		1						
	Forced sto	op valid	0						
			Ŭ						
	Note. 0: OF	F 1: ON							
Position instruction	Refer to Position	instructio	n executio	n demand		RX10			
execution completion	(RY10).	• • • • • • • • • • • • • • • • • • • •			\sim	DV11			
Speed Instruction	(RV11)	Instruction	execution	i demand		RAII			
Trouble	When the trouble	signal is	used in C	C-Link it	RX1A	RX3A			
	turns to "1" (ON)	at alarm o	ccurrence of	or the like.			1		
	Since the external	dynamic b	orake is us	ed, setting					
	"□ 1 □ □" in para	meter No.	3 changes	the output					
	signal correspondin	ng to the se	ervo status						
		F	RX1A or RX3A	1					
	Serve status	Pa	arameter setti	ng					
	Serve status	No	o.3	No.44					
			(Note) 1 .	(Note) 1					
	Normal status	0	0	0					
	Power off	1	1	1					
	Failure converse	1	1	1					
	Sorvo off	1	0	0					
	Forced stop valid	0	1	1					
	Note Cannot be set sin	nultaneously	Simultanoour	setting			\		
	results in alarm (AL.37).	CirrandineOus	Soung			\		

Signal name		Descripti	on		Devic 1 station	e No. 2 stations	I/O input CN1
Trouble	When the trouble signal is used as the CN1 external output signal, it turns OFF at alarm occurrence or the like. Since the external dynamic brake is used, setting " $\Box 1 \Box \Box$ " in parameter No. 3 changes the output signal corresponding to the serve status.					occupied	48
	Servo status	Servo status					
	Normal status	ON	ON	ON			
	Power off	OFF	OFF	OFF			
	Warning occurrence	ON	ON	OFF			
	Failure occurrence	OFF	OFF	OFF			
	Servo off	ON	ON	ON			
	Forced stop valid	ON	OFF	OFF			
	Note. 1. ON: 48-SG conducting, OFF: 48-SG not conducting 2. Cannot be set simultaneously. Simultaneous setting results in alarm (AL.37).						
Remote bureau	This signal turns t	o "1" (ON) at power-	on or to "0"	RX1B	RX3B	
communication ready	(OFF) in either of t	he followi	ing statuses				\mathbf{n}
5	(or ,) in eacher of the following statuses.					\backslash	
	Servo status (Note1) RX1B or RX3B					\backslash	
	Failure occurrence 0						
	(Note2) Reset ON st	atus	0				\backslash
	Note1. 0: OFF 1: ON 2. When 1 station is When 2 stations a	occupied: R are occupied:	Y1A, : RY3A				

(c) Remote registers

The signal whose Remote Register field has an oblique line cannot be used.

1) Input (PLC \rightarrow servo amplifier)

Remote	register			
1 station	2 stations	Signal name	Description	Setting range
occupied	occupied			
RWwo	RWwo	Monitor 1	 Demands the status indication data of the servo amplifier. 1) When 1 station is occupied Setting the code of the status indication item to be monitored to RWwo and turning RYC to "1" (ON) sets data to RWRo. 2) When 2 stations are occupied Setting the code of the status indication item to be monitored to RWwo and turning RYC to "1" (ON) sets data to RWRo. 	0000 to 001A
			When demanding 32-bit data, specifying the lower 16-bit code No. and turning RYC to "1" (ON) sets the lower 16-bit data to RW _{R0} and the upper 16-bit data to RW _{R1} . Refer to Section 3.5.3 for the status indication item.	

Remote register				
1 station	2 stations	Signal name	Description	Setting range
occupied	occupied	- 3 -		
RWwı	RWwı	Monitor 2	 Demands the status indication data of the servo amplifier. 1) When 1 station is occupied Setting the code of the status indication item to be monitored to RWw1 and turning RYC to "1" (ON) sets data to RWR1. 2) When 2 stations are occupied When demanding 32-bit data, specifying the lower 16-bit code No. and turning RYC to "1" (ON) sets the lower 16-bit data to RWR5 and the upper 16-bit data to RWR6. Refer to Section 3.5.3 for the status indication item. 	0000 to 001A
RWw2	RWw2	Instruction code	Sets the instruction code used to perform parameter or point table data read, alarm reference or the like. Setting the instruction code to RWw2 and turning RYD to "1" (ON) executes the instruction. RXD turns to "1" (ON) on completion of instruction execution. Refer to Section 3.5.4 for instruction code definitions.	Refer to Section 3.5.4 (1).
RWw3	RWw3	Writing data	Sets the written data used to perform parameter or point table data write, alarm history clear or the like. Setting the written data to RWw3 and turning RYD to "1" (ON) writes the data to the servo amplifier. RXD turns to "1" (ON) on completion of write. Refer to Section 3.5.4 (2) for written data definitions.	Write instruction code: Refer to Section 3.5.4 (2). Parameter: Refer to Section 7.6. Point table: Refer to Section 4.4.4 (1).
	RWw4	Position block No./ Position instruction data under 16bit	Sets the position block No. to be executed in the automatic operation mode when 2 stations are occupied.	Position block No.: 0 to 255 Position command
	RWw5	Position instruction data upper 16bit	Setting the position block No. to RWw4 and turning RY10 to "1" (ON) sets the position block No. to the servo amplifier. RX10 turns to "1" (ON) on completion of setting. When the point table is not used, set the position command data. Setting the lower 16 bits to RWw4 and the upper 16 bits to RWw5 and turning RY10 to "1" (ON) writes the upper and lower 16-bit position command data. RX10 turns to "1" (ON) on completion of write. Use parameter No. 65 to set the position block No. and position command data. Refer to Section 3.6.3 for details of the position block No./position command data.	data: 0 to 999999

Remote register				
1 station	2 stations	Signal name	Description	Setting range
occupied	occupied			
\setminus	RWw6	Speed block No./	When the point table is not used, set the speed	Speed block No.:
\backslash		Speed instruction	block No. to be executed or the speed command	1 to 8
\backslash		data	data (motor speed [r/min]).	Speed command
\setminus			Setting the position block No. to $RW{\scriptstyle W5}$ and	data:
\setminus			turning RY11 to "1" (ON) writes the speed block	0 to permissible
\setminus			No. or speed command data to the servo amplifier.	speed
\backslash			RX11 turns to "1" (ON) on completion of setting.	
\backslash			Use parameter No. 65 to set the speed block No.	
\backslash			and speed command data.	
$\langle \rangle$			Refer to Section 3.6.3 for details of the speed block	
			No./speed command data.	

2) Output (Servo amplifier \rightarrow PLC)

Note that the data set to $RW{\ensuremath{\mathtt{R0}}}$ and $RW{\ensuremath{\mathtt{R1}}}$ depends on whether 1 station or 2 stations are occupied.

If you set inappropriate code No. or data to the remote register input, the error code is set to Answer code (RW_{R2}). Refer to Section 3.5.5 for the error code.

When 1 station is occupied

Remote register	Signal name	Description
RW _{R0}	Monitor 1 data	The data of the status indication item set to RW_{W0} is set.
RW _{R1}	Monitor 2 data	The data of the status indication item set to RWw1 is set.
RW _{R2}	Answer code	"0000" is set when the codes set to $RW_{W0} \sim RW_{W3}$ are executed normally.
RW _{R3}	Reading data	Data corresponding to the read code set to RWw2 is set.

When 2 stations are occupied

Remote register	Signal name	Description
RWR0	Monitor 1 data under 16bit	The lower 16 bits of the data of the status indication item set to RW_{W0} are
		set.
RW _{R1}	Monitor 1 data upper 16bit	The upper 16 bits of the data of the status indication item set to RW_{W0}
		are set. A sign is set if there are no data in the upper 16 bits.
RW _{R2}	Answer code	"0000" is set when the codes set to $RW_{W0} \sim RW_{W6}$ are executed normally.
RW _{R3}	Reading data	Data corresponding to the read code set to RWw2 is set.
RW _{R4}	M code output	The executed M code is set.
RW _{R5}	Monitor 2 data under 16bit	The lower 16 bits of the data of the status indication item set to RW_{W1} are
		set.
RW _{R6}	Monitor 2 data upper 16bit	The upper 16 bits of the data of the status indication item set to RWw1
		are set. A sign is set if there are no data in the upper 16 bits.

(2) Roll feeding system

(a) Input signals

The I/O Input CN1 field indicates the pin number that may be assigned to the CN1 connector when the signal is used as the CN1 external input signal. The signal whose Device No. field has an oblique line cannot be used in CC-Link.

			Devid		
Signal name	Descri	1 station	2 stations	CN1	
			occupied	occupied	CNT
Servo on	Turning RY0 to "1" (Of	N) powers on the base	RY0	RY0	12
	circuit, making operation	ready to start.			
	Turning it to "0" (OFF) po	wers off the base circuit,			
	coasting the servo motor.				
Restart	After turning RY3 to "1"	(ON) to stop operation	RY1	RY1	13
	temporarily, keep RY1 "1	" (ON) for longer than			
	5ms to resume operation f	rom where it stopped.			
Speed selection	Used to select the speed b	ock No. to be executed.	RY2	RY2	14
	Turn RY2 to "0" (OFF) to	choose the speed block			
	No. 1, or to "1" (ON) to ch	oose the speed block No.			
	2.				
Temporary stop	Keeping RY3 "1" (ON) for	longer than 5ms during	RY3	RY3	15
	operation suspends and st	ops operation. Turn RY1			
	to "1" (ON) to make a rest	art.			
Torque limit selection	Turning RY4 to "1" (ON	J) limits the generated	RY4	\searrow	38
	torque according to the vo	ltage of the torque limit			
	command (TLAP). Turnin	g it to "0" (OFF) makes			
	the parameter No. 40 setti	ing valid.			
Second feed distance	Used to select the pos	ition block No. to be	RY5	\mathbf{i}	39
	executed.				
	Turning RY5 to "0" (OF	F) chooses the position			
	block No. 0. Turning it	to "1" (ON) chooses the			
	position block No. 1.				
Clear	Keeping RY6 "1" (ON) for	longer than 5ms clears	RY6	RY6	37
	the droop pulses. Turnin	g it to "1" (ON) during			
	operation causes a sudd	en stop and clears the			
	remaining distance.	1			
	Using parameter No. 42,	you can select "Clear at			
A	DV7 DV9 and DV9 are	ared during ON .	DV7	DV7	41
Automatic operation	RY7, RY8 and RY9 are	combined to select the	KY/	RY/	41
Manual anomation coloction	operation mode.		DV9	DV9	49
Remote menual encertion	(Note) Input signal	Operation mode			42
Remote manual operation	RY9 RY8 RY7	opolation mode	KY9	RI9	43
Selection		Automatic operation			
		Manual operation			
		Remote manual operation			
	NOTE. U: UFF 1: UN				

				Devic	1	
Signal name		Desc	ription	1 station	2 stations	I/O input
- 0 -				occupied	occupied	CN1
Forward rotation start	In the autor	natic operati	on mode, the servo motor	RYA	RYA	44
Reverse rotation start	starts as indi	icated below	:	RYB	RYB	45
	(Note) In	outeianal	T1			
			Rotation direction			
	1	1	Stop (comvo lock)			
	0	1				
	1	1				
	0	0	Ston (serve lock)			
			Stop (Ser vo rock)			
	Note. 0. OF	I. UN				
	In the remot	te manual o	peration mode, the servo			
	motor rotates	s while the s	ignal is "1" (ON).			
	(Note) Ing	put signal	Detation direction			
	RYB	RYA	Rotation direction			
	0	1	CCW			
	1	0	CW			
	Note. 0: OFF	1: ON				
	The direction of rotation started by turning the					
	signal on car	he changed	by setting narameter No.			
	2.	2.				
Monitor output execution	Turning RY(C to "1" (ON)	sets the following	RYC	RYC	1
demand	data/signals.	At the same	e time, RXC turns to "1"			Ν
	(ON). While	RYC is "1" (0	ON), the monitor values			
	are always u	pdated.				
	1) When 1 st	ation is occu	pied			
	Remote reg	gister RWR0:	Data requested by			
	monitor 1	(RWwo)				
	Remote reg	gister RWR1:	Data requested by			
	Remote re	(RWW1) gistor RWpg.	Normal or error answer			
	code	gister it wkz.	Normal of error answer			
	2) When 2 st	ations are oc	cupied			
	Remote re	gister RWR0:	Lower 16 bits of data			
	requested	by monitor 1	l (RWwo)			
	Remote reg	gister RWR1:	Upper 16 bits of data			
	requested	by monitor 1	l (RWwo)			
	Remote reg	gister RWR5:	Lower 16 bits of data			
	requested	by monitor 2	? (RWw5)			
	Remote reg	gister RWR6:	Upper 16 bits of data			
	requested Bomoto ro	by monitor 2	(RWW5)			
	code	gister KWR2.	Normal of error answer			
	Refer to Se	ection 3.6.1 f	or details.			
Instruction code execution	Turning RYI	D to "1" (ON	I) executes the processing	RYD	RYD	
demand	correspondin	g to the ins	struction code set to the			
	remote regist	ter RWw2.				
	After comple	tion of inst	ruction code execution, a			
	normal or er	ror answer c	code is set to RW_{R2} . At the			
	same time, R	XD turns to	"1" (ON).			
	Refer to Sect	ion 3.6.2 for	details	1		

Signal name	D	escription	1 station 2 stations		I/O input
- g	_	F	occupied	occupied	CN1
Position instruction	Turning RY10 to "1"	(ON) sets the position block	N .	RY10	Ν
demand	No. or position comm	and data set to the remote	$\left \right\rangle$		
	register RWw4 • RWws	5.			
	When it is set to the s	ervo amplifier, the normal or			
	error answer code is	set to RWR2. At the same			
	time, RX10 turns to "2	1" (ON).			
	Refer to Section 3.6.3	for details.			
Speed instruction demand	Turning RY11 to "1" (ON) sets the speed block No.	Ν	RY11	Ν
	or speed command da	ta set to the remote register			
	RWw6.				
	When it is set to the s	ervo amplifier, the normal or			
	error answer code is	set to RW_{R2} . At the same			
	time, RX11 turns to "1	1" (ON).			
	Refer to Section 3.6.3	for details.			
Override selection	Used to select whethe	r the override (OVR) analog	\backslash	RY12	$\left \right\rangle$
	input signal is made v	valid or invalid.			
	(Note) RY12	Speed change value			
	0	No change			
	1	Override (OVR) setting is valid.			
	Note. 0: OFF 1: ON				
Manual pulse generator	When using this signa	al, set " $\Box \Box \Box 4$ " in		RY13	
magnification selection bit0	parameter No. 60 to n	nake the manual pulse			\vdash
Manual pulse generator	generator multiplying	factor selection signal valid.	\backslash	RY14	\mathbb{N}
magnification selection bit I	lurning RY13 and RY	14 to 1 (ON)/ 0 (OFF)			$ \rangle$
	nulso gonorator	ng factor of the manual			
	(Note) Input signal	Multiplying factor			
	RY14 RY13				
	0 0	×1			
	0 1	×10			
	1 0	×100			
	Note. 0: OFF 1: ON				
Reset	Keeping this signal "1	" (ON) for longer than 20ms	RY1A	RY3A	Ν
	deactivates any of the	following alarms. The base			$ \rangle$
	circuit is off while the	signal is "1" (ON).			
	Indication Name	Indication Name			
	AL.10 Under voltage	e AL.45 Main circuit device overheat			$ \rangle$
	AL.24 Ground fault	AL 46 Serve motor			
	AL.32 Over current	overheat			
	AL.33 Over voltage	AL.52 Error excessive			
	AL.35 Command pu	lse AL.8D CC-Link alarm			
	frequency ala	rm AL.8E RS-232C alarm			
	AL.42 Feedback alar	rm AL.8F RS-422 alarm			
Forced stop	This signal may be	used as the external input	Ν	\land	46
	signal only. It cannot	be used in CC-Link.			
	Opening CN1-46 a	nd SG places the servo			
	amplifier in a forced	stop status, causing servo off			
	and operating the	dynamic brake to make a			
	Shorting CN1 40	nd SC aqueos the second			
	amplifier to leave the	forced stop status			

(b) Output signals

The I/O Input CN1 field indicates the pin number that may be assigned to the CN1 connector when the signal is used as the CN1 external output signal. The signal whose Device No. field has an oblique line cannot be used in CC-Link.

		Devid	I/O input	
Signal name	Description	1 station	2 stations	
		occupied	occupied	CNT
Ready	This signal turns to "1" (ON) when the servo	RX0	RX0	49
	amplifier is ready to operate without any failure			
	after servo-on.			
Positioning completion	This signal turns to "1" (ON) when the droop pulse	RX1	RX1	24
	value has become less than the in-position range			
	set in the parameter.			
	This signal is not output while the base circuit is			
	off.			
Rough match	This signal turns to "1" (ON) when the command	RX3	RX3	23
	remaining distance has become less than the			
	rough match output range set in the parameter.			
	This signal is not output while the base circuit is			
Alarm codo hit0	oll. The alarm code is output to PY6 PY7 PY8 and	DVG	DV6	<u> </u>
Alarm code bit1	RX9 in 4-bit binary	PY7	RA0 PY7	
Alarm code bit?	Refer to Section 11.4.1.	RX8	RX8	
Alarm code bit2		RX9	RX0	
I imiting torque	This signal turns to "1" (ON) when the torque	RXA	RXA	23
Emitting torque	limit value set internally or externally is reached	10/11	10/01	20
	When using this signal as the external output			
	signal, make Limiting torque valid in the setting			
	of parameter No. 44.			
Electromagnetic brake	The electromagnetic brake interlock signal is	RXB	RXB	23
inter lock	output.			
	RXB turns to "0" (OFF) at servo-off or alarm			
	occurrence.			
	When using this signal as the external output			
	signal, make Electromagnetic brake interlock			
	valid in the setting of parameter No. 3.			<u> </u>
Monitoring	Refer to Monitor output execution demand.	RXC	RXC	
Instruction code execution	Refer to Instruction code execution demand.	RXD	RXD	
completion		DVE	DVE	$\langle - \rangle$
Warning	RXE turns to "1" (ON) if a warning occurs in the	RXE	RXE	$ \rangle$
	servo amplifier. The outputs corresponding to the			
	servo statuses are indicated below.			
	Servo status (Note) RXE			
	Normal status 0			
	Power off 1			
	Warning occurrence 1			
	Failure occurrence 0			
	Servo off 0			
	Forced stop valid 0			
	Note 0 OFF 1 ON			
				1

					Devic		
Signal name		Descriptio	20			2 stations	I/O input
Signarhame		Description	JII		1 Station	2 Stations	CN1
5				, ,		occupied	
Position instruction	Refer to Position	instructio	on executio	on demand		RX10	
execution completion	(RY10).						
Speed instruction	Refer to Speed	instruction	n executio	n demand		RX11	
execution completion	(RY11).						
Trouble	When the trouble	signal is ι	used in CC	-Link, RXF	RX1A	RX3A	Ν
	turns to "1" (ON) a	t alarm oc	currence of	the like.			$ \rangle$
	Since the external	dynamic	brake is us	sed, setting			
	$\square \square \square \square \square$ in param	meter No.	3 changes	the output			
	signal correspondin	ng to the s	ervo status				
			RX1A or RX3	A			
		Р	arameter sett	ing			
	Servo status	N	0.3	No.44			
			(Note)	(Note) 1			
	Normal status	0	0	0			
	Power off	1	1	1			
	Warning occurrence	0	0	1			
	Failure occurrence	1	1	1			
	Servo off	0	0	0			
	Forced stop valid	0	1	0			
	Note. Cannot be set sin results in alarm (/	nultaneously. AL.37).	Simultaneou	s setting			
	When the trouble	signal i	e hazu zi	the CN1			/8
	external output si	onal RXF	' turns OF	F at alarm	$\left \right\rangle$		10
	occurrence or the l	ike		i ut ului ili			
	Since the external	dynamic	hrake is u	sed setting			
	" $\Box 1 \Box \Box$ " in para	meter No	3 changes	the output			
	signal correspondi	ng to the s	ervo status	the output			
	Signal correspondi		er vo statu				
		(No	ote1) Output s	ignal			
	Servo status	P	arameter sett	ng			
		N	0.3	No.44			
			(Note)∟1∟∟	(Note)1_			
	Normal status	ON	ON	ON			
	Power off	OFF	OFF	OFF			
	Failure accurrence	OFF	OFF	OFF			
	Failure occurrence	OFF	OFF	OFF			
	Servo on Forced stop valid	ON	OFF	ON			
	Torced stop vand		011	ON			
	Note. 1. ON: 48-SG cor 2. Cannot be set	nducting, OFI simultaneous	F: 48-SG not (slv. Simultane	conducting ous setting			
	results in alarn	n (AL.37).					
Remote bureau	This signal turns t	to "1" (ON)) at power-	on or to "0"	RX1B	RX3B	\land
communication ready	(OFF) in either of the following statuses:						
	Servo status (Note1) RX1B or RX3B						
	Failure occurrent	ce	0	-			
	(Note2) Reset ON st	tatus	0				
	Note1. 0: OFF 1: ON						
	2. When 1 station is	occupied: R	(1A, PV3A				
	when 2 stations a	are occupied:	NIJA				

(c) Remote registers

The signal whose Remote Register field has an oblique line cannot be used. 1) Input (PLC \rightarrow servo amplifier)

Remote	register			
1 station	2 stations	Signal name	Description	Setting range
occupied	occupied			
RWw0	RWwo	Monitor 1	Demands the status indication data of the servo	0000 to 001A
			amplifier.	
			1) When 1 station is occupied	
			Setting the code of the status indication item to	
			be monitored to RW_{W0} and turning RYC to "1"	
			(ON) sets data to RWR0.	
			2) When 2 stations are occupied	
			Setting the code of the status indication item to	
			be monitored to RW_{W0} and turning RYC to "1"	
			(ON) sets data to RWR0.	
			When demanding 32-bit data, specifying the	
			lower 16-bit code No. and turning RYC to "1"	
			(ON) sets the lower 16-bit data to RW_{R0} and the	
			upper 16-bit data to RWR1.	
			Refer to Section 3.5.3 for the status indication	
			item.	
RWw1	RWw1	Monitor 2	Demands the status indication data of the servo	0000 to 001A
			amplifier.	
			1) When 1 station is occupied	
			Setting the code of the status indication item to	
			be monitored to RWw1 and turning RYC to "1"	
			(ON) sets data to RWR1.	
			2) When 2 stations are occupied	
			When demanding 32-bit data, specifying the	
			lower 16-bit code No. and turning RYC to "1"	
			(ON) sets the lower 16-bit data to RW_{R5} and the	
			upper 16-bit data to RW _{R6} .	
			Refer to Section 3.5.3 for the status indication	
			item.	
RWw2	RWw2	Instruction code	Sets the instruction code used to perform	Refer to Section
			parameter or point table data read, alarm	3.5.4 (1).
			reference or the like.	
			Setting the instruction code to RWW2 and turning	
			turns to "1" (ON) executes the instruction. KAD	
			avagution	
			Pafer to Section 3.5.4 for instruction code	
			definitions	
PW	PW/wa	Writing data	Sate the written data used to perform parameter	Write instruction
1000 W3	1 . vv w3	witting uata	or point table data write, alarm history clear or	codo:
			the like	Refer to Section
			Setting the written data to RW _{W2} and turning	3 5 4 (2)
			RYD to "1" (ON) writes the data to the serve	Parameter
			amplifier. RXD turns to "1" (ON) on completion of	Refer to Section 7.6
			write.	Point table:
			Refer to Section 3.5.4 (2) for written data	Refer to Section
			definitions.	5.4.4 (1).

Remote register				
1 station	2 stations	Signal name	Description	Setting range
occupied	occupied			
	RWw4	Position instruction	When the point table is not used, set the position	0 to 999999
		data under 16bit	command data.	
Ν	RWw5	Position instruction	Setting the lower 16 bits to RW_{W4} and the upper	
\backslash		data upper 16bit	16 bits to RW_{W^5} and turning RY10 to "1" (ON)	
\backslash			writes the upper and lower 16-bit position	
			command data. RX10 turns to "1" (ON) on	
\setminus			completion of write.	
\backslash			Use parameter No. 65 to set the position block No.	
\backslash			and position command data.	
\backslash			Refer to Section 3.6.3 for details of the position	
			block No./position command data.	
Ν	RWw6	Speed instruction	When the point table is not used, set the speed	Speed command
\backslash		data	block No. to be executed or the speed command	data: 0 to
\backslash			data (motor speed [r/min]).	permissible speed
\setminus			Setting the position block No. to RW_{W^5} and	
\setminus			turning RY11 to "1" (ON) writes the speed block	
\setminus			No. or speed command data to the servo amplifier.	
\backslash			RX11 turns to "1" (ON) on completion of setting.	
			Use parameter No. 65 to set the speed block No.	
			and speed command data.	
			Refer to Section 3.6.3 for details of the speed block	
			No./speed command data.	

2) Output (Servo amplifier \rightarrow PLC)

Note that the data set to $RW{\ensuremath{\mathtt{R0}}}$ and $RW{\ensuremath{\mathtt{R1}}}$ depends on whether 1 station or 2 stations are occupied.

If you set inappropriate code No. or data to the remote register input, the error code is set to Answer code (RW_{R2}). Refer to Section 3.5.5 for the error code.

When 1 station is occupied

Remote register	Signal name	Description
RWR0 Monitor 1 data The data of the status indication ite		The data of the status indication item set to RWwo is set.
RW _{R1}	Monitor 2 data	The data of the status indication item set to RWw1 is set.
RW _{R2} Answer code "0000" is set when the codes set		"0000" is set when the codes set to $RW_{W0} \sim RW_{W3}$ are executed normally.
RW _{R3}	Reading data	Data corresponding to the read code set to RWw2 is set.

When 2 stations are occupied

Remote register	Signal name	Description	
RWR0	Monitor 1 data under 16bit	The lower 16 bits of the data of the status indication item set to RW_{W0} are	
		set.	
RW _{R1}	Monitor 1 data upper 16bit	The upper 16 bits of the data of the status indication item set to RW_{W0}	
		are set. A sign is set if there are no data in the upper 16 bits.	
RW _{R2}	Answer code	"0000" is set when the codes set to $RW_{W0}{\sim}RW_{W3},RW_{W5}$ and RW_{W6} are	
		executed normally.	
RW _{R3}	Reading data	Data corresponding to the read code set to RWw2 is set.	
RW _{R5}	Monitor 2 data under 16bit	The lower 16 bits of the data of the status indication item set to RW_{W1} are	
		set.	
RW _{R6}	Monitor 2 data upper 16bit	The upper 16 bits of the data of the status indication item set to RW_{W1}	
		are set. A sign is set if there are no data in the upper 16 bits.	

3.5.3 Monitor codes

To demand 32-bit data when 2 stations are occupied, specify the lower 16-bit code No. Use any of the instruction codes 0101 to 011C to read the decimal point position (multiplying factor) of the status indication.

Setting any code No. that is not given in this section will set the error code ($\Box \Box 1 \Box$) to Answer code (RWR2). At this time, "0000" is set to RWR0, RWR1, RWR5 and RWR6.

For monitor data, refer to Section 8.3.

Code No.			Answer data (Servo amplifier $ ightarrow$ PLC)	
1 station occupied	2 stations occupied	Monitored item	Data length	Unit
0000	0000	Not monitored.	0000	
0001	0001	Current position under 16bit	16bit	
0002		Current position upper 16bit	16bit	
0003	0003	Command position under 16bit	16bit	(Note2)
0004		Command position upper 16bit	16bit	$\times 10^{51}$ [mm] or $\times 10^{51}$ [inch]
0005	0005	Command remaining distance under 16bit	16bit	
0006		Command remaining distance upper 16bit	16bit	
0007	0007	Override	16bit	[%]
0008	0008	Position block	16bit	[No.]
0009	0009	Speed block	16bit	[No.]
000A	000A	Feedback pulse value under 16bit	16bit	[pulse]
000B		Feedback pulse value upper 16bit	16bit	[pulse]
000C	000C	Machine speed under 16bit	16bit	[mm/min] or
000D		Machine speed upper 16bit	16bit	[inch/min]
000E	000E	Droop pulse value under 16bit	16bit	[pulse]
000F		Droop pulse value upper 16bit	16bit	[pulse]
0010	0010	Torque limit command voltage	16bit	×0.01[V]
0011	0011	Regenerative load factor	16bit	[%]
0012	0012	Effective load factor	16bit	[%]
0013	0013	Peak load factor	16bit	[%]
0014	0014	Within one-revolution position	16bit	[pulse]
0015	0015	ABS counter	16bit	[rev]
0016	0016	Motor speed under 16bit	16bit	imes0.1[rev/min]
0017		Motor speed upper 16bit	16bit	imes0.1[rev/min]
0018	0018	Bus voltage	16bit	[V]
0019	0019	(Note1) ABS position reading under 16bit	16bit	[pulse]
001A		(Note1) ABS position reading upper 16bit	16bit	[pulse]

Note 1. For the data, refer to "ABS data" in Section 8.4.

2. The decimal point position changes with the parameter No. 4 setting.

3.5.4 Instruction codes (RWw2 - RWw3)

Refer to Section 3.6.2 for the instruction code timing charts.

(1) Read instruction codes

Set the code No. corresponding to the item to RWw_2 . The codes and answer data are all 4-digit hexadecimal numbers.

Setting any code No. that is not given in this section will set the error code ($\Box \Box 1 \Box$) to Answer code (RWR2). At this time, "0000" is set to Reading data (RWR3).

Code No.	Item/Function	Reading data (RWR3) contents
0000		
0000	Operation mode	0000: CC-Link operation mode
0000	Reads the operation mode.	0001: Parameter unit test operation mode
0002	Proven multiplying factor	0300: ×1000
	Reads the multiplying factor of the	0200: ~100
	position data in the position block set in	$0100. \times 10^{-10}$
		$0001 \times 1/10 (\times 0.1)$
		$0002: \times 1/100 (\times 0.01)$
		0003: ×1/1000 (×0.001)
0010	Current alarm (warning) reading	
	Reads the alarm No. or warning No.	
	occurring currently.	
		Occurring alarm No./warning No.
0011	Reading the current alarm (warning)	
	Reading	
	occurring concurrently	Concurrently occurring alarm No /warning No
	occurring concurrently.	
0020	Alarm number in alarm history (most recent alarm)	
0021	Alarm number in alarm history (first	
	recent alarm)	Alarm No. that occurred in past
0022	Alarm number in alarm history (second	
	recent alarm)	
0023	Alarm number in alarm history (third	
	recent alarm)	
0024	Alarm number in alarm history (fourth	
	recent alarm)	
0025	Alarm number in alarm history (fifth	
0096	Alarma number in alarma history (siste	
0026	recent alarm)	
0027	Alarm number in alarm history (seventh	
0027	recent alarm)	
0028	Alarm number in alarm history (eighth	
0020	recent alarm)	
0029	Alarm number in alarm history (ninth	
	recent alarm)	

Code No.	Item/Function	Reading data (RW _{R3}) contents (Serve amplifier \rightarrow PLC)
0030	Alarm occurrence time in alarm history	
0031	Alarm occurrence time in alarm history (first recent alarm)	Occurrence time of alarm that occurred in past
0032	Alarm occurrence time in alarm history (second recent alarm)	
0033	Alarm occurrence time in alarm history (third recent alarm)	
0034	Alarm occurrence time in alarm history	
0035	Alarm occurrence time in alarm history (fifth recent alarm)	
0036	Alarm occurrence time in alarm history (sixth recent alarm)	
0037	Alarm occurrence time in alarm history (seventh recent alarm)	
0038	Alarm occurrence time in alarm history (eighth recent alarm)	
0039	Alarm occurrence time in alarm history (ninth recent alarm)	
0040	Input signal status 0 Reads the statuses (0 or 1) of the input signals.	bit 0 to bit F indicate the statuses (0 or 1) of the corresponding input signals. Refer to Section 3.5.1 for the meanings of the abbreviations.
0041	Input signal status 1	bitF bit0 bit7 bit0 bit7 bit0 bit0 bit8 bit9 bit8 bit9 bit9 bit9 bit9 bit9 bit9 bit9 bit9
0041	Reads the statuses (0 or 1) of the input signals.	 bit 0 to bit F indicate the statuses (0 of 1) of the corresponding input signals. Refer to Section 3.5.1 for the meanings of the abbreviations. bitF bit0 bitF bit0 1) Positioning system bit0: PSR bit4: TP1 bit8: bitC: bit1: SPR bit5: bit9: bitD: bit2: OVR bit6: bitA: bitE: bit3: TP0 bit7: bitB: bitF: 2) Roll feeding system bit0: PSR bit4: TP1 bit8: bitC: bit1: SPR bit5: bit9: bitE: bit2: OVR bit6: bit8: bitC: bit1: SPR bit4: TP1 bit8: bitC: bit2: OVR bit6: bit9: bitD: bit1: SPR bit5: bit9: bitD: bit1: SPR bit5: bit9: bitD: bit1: SPR bit5: bit9: bitD:

Code No.	Item/Function	Reading data (RW _{R3}) contents (Servo amplifier \rightarrow PLC)		
0042	Input signal status 2	bit 0 to bit F indicate the statuses (0 or 1) of the corresponding		
0012	Reads the statuses (0 or 1) of the input	input signals. Refer to Section 3.5.1 for the meanings of the		
	signals.	abbreviations.		
		bitF bit0		
		1) Positioning system		
		bit0: bit4: bit8: bitC:		
		bit1: bit5: bit9: bitD:		
		bit2: bit6: bitA: RES bitE:		
		bit3: $$ bit7: $$ bitB: $$ bitF: $$		
		2) Roll feeding system		
		bit1: bit5: bit0: bitD:		
		bit? $$ bit6: $$ bit4: RFS bitF: $$		
		bit3: $$ bit7: $$ bitB: $$ bitF: $$		
0050	Output signal status 0	bit 0 to bit F indicate the statuses (0 or 1) of the corresponding		
	Reads the statuses (0 or 1) of the Output	output signals. Refer to Section 3.5.1 for the meanings of the		
	signals.	abbreviations.		
		bitF bit0		
		1) Positioning system		
		When 2 stations are occupied, MC0 and MC1 do not function		
		and therefore they are always "0".		
		bit0: RD bit4: MC0 bit8: AC2 bitC: MOF		
		DITI: INP DITS: MCI DIT9: AC3 DITD: COF		
		bit 2: CPO bit 0: ACO bit A: TEC bit E: WNG bit 3: 7P bit 7: AC1 bit B: MBR bit $F:$		
		2) Roll feeding system		
		bit0: RD bit4: $$ bit8: AC2 bitC: MOF		
		bit1: INP bit5: ——— bit9: AC3 bitD: COF		
		bit2: CPO bit6: AC0 bitA: TLC bitE: WNG		
		bit3: bit7: AC1 bitB: MBR bitF:		
0051	Output signal status 1	bit 0 to bit F indicate the statuses (0 or 1) of the corresponding		
	Reads the statuses (0 or 1) of the Output	output signals. Refer to Section 3.5.1 for the meanings of the		
	signals.	abbreviations.		
		1) Positioning system		
		When 2 stations are occupied, MC0 and MC1 do not function		
		and therefore they are always "0".		
		bit0: PSF bit4: $$ bit8: $$ bitC: $$		
		bit 1: SPF bit 3: $$ bit 4: $$ bit 5: $$		
		$bit_{2} = bit_{2} = bit_{3} = bit_{4} = bit_{5} =$ $bit_{5} =$		
		2) Roll feeding system		
		bit0: PSF bit4: bit8: bitC:		
		bit1: SPF bit5: bit9: bitD:		
		bit2: bit6: bitA: bitE:		
		bit3: bit7: bitB: bitF:		

Code No.	Item/Function	Reading data (RW℞3) contents (Servo amplifier → PLC)
0052	Output signal status 2 Reads the statuses (0 or 1) of the Output signals.	bit 0 to bit F indicate the statuses (0 or 1) of the corresponding output signals. Refer to Section 3.5.1 for the meanings of the abbreviations. bitF bit0 1) Positioning system When 2 stations are occupied, MC0 and MC1 do not function and therefore they are always "0". bit0: bit4: bit8: bitC: bit1: bit5: bit9: bitD: bit2: bit6: bit4: ALM bitE: bit3: bit7: bit8: CRD bitF: 2) Roll feeding system bit0: bit4: bit8: bit0: bit1: bit5: bit8: bit0: bit1: bit5: bit8: bit7: bit1: bit5: bit8: bit7: bit1: bit5: bit8: bit7: bit1: bit5: bit8: bit7: bit1: bit5: bit8: bit7: bit7: bit8: bit7:
0080	Setting time Reads the setting time.	Returns the setting time [ms].
0081	Energization time Reads the energization time from shipment.	Returns the energization time [h].
0082	Power ON frequency Reads the number of power-on times from shipment.	Returns the number of power-on times.
00A0	Ratio load inertia Reads the estimated ratio of load inertia moment to servo motor shaft inertia moment.	Returns the estimated ratio of load inertia moment to servo motor shaft inertia moment [times].
00B0	Within-1-revolution position data (CYC0) Cycle counter value of absolute home position	Return unit [pulses]
00B1	Multi-revolution data (ABS0) Multi-revolution counter value of absolute home position	Return unit [rev]
00C0 to 00CF	Error parameter No./Point data No. reading Reads up to 16 parameter, position block and speed block numbers in error using the 00C0 to 00CF codes.	0 Parameter No. or block No. 1: Parameter 2: Position block 3: Speed block
0200 to 024F	Parameter setting Reads the values set in parameter No. 0 to 79. The decimal value converted from the 2 lower digits of the code No. corresponds to the parameter No.	The setting of the requested parameter No. is returned. For parameter No. 1, "F" enters the blank digits. For example, setting of "13" will be "FF13". For other parameters, make setting as indicated in Section 7.2.

Code No.	Item/Function	Reading data (RW℞₃) contents (Servo amplifier → PLC)
0300 to 034F	Data form of parameter setting Reads the data format of the values set in parameter No. 0 to 79. The decimal value converted from the 2 lower digits of the code No. corresponds to the parameter No.	The setting of the requested parameter No. is returned.
0400 to 05FF	Position data of position block Reads the position data of position block No. 0 to 255. The usable position block Nos. depend on the feeding system and the number of occupied stations. The lower 16 bits are read in even code and the upper 16 bits in odd code. Example Instruction code 043A: Lower 16 bits of position block No. 58 Instruction code 053A: Upper 16 bits of position block No. 58 When 1 station is occupied, sending the code No. of position block No. 8 or larger will return the error code.	The position data (upper 16 bits or lower 16 bits) set in the requested position block No. is returned.
0600 to 06FF 0700 to 07FF	M code of position block Reads the M codes of position block No. 0 to 255. The usable position block Nos. depend on the feeding system and the number of occupied stations. The decimal value converted from the 2 lower digits of the code No. corresponds to the position block No. Speed block No. of position block Reads the speed block Nos. of position block No. 0 to 255. The usable position block Nos. depend on the feeding system and the number of occupied stations. The decimal value converted from the 2	The M code set to the requested position block No. is returned. The speed block No. set to the requested position block No. is returned.
	lower digits of the code No. corresponds to the position block No.	

Code No.	Item/Function	Reading data (RW _{R3}) contents (Servo amplifier \rightarrow PLC)
0801 to 0808	Rotational speed of speed block Reads the speeds of speed block No. 1 to 8. The usable speed block Nos. depend on the feeding system and the number of occupied stations. The decimal value converted from the 2 lower digits of the code No. corresponds to the speed block No.	The speed set to the requested speed block No. is returned.
0901 to 0908	Acceleration time constant of speed block Reads the acceleration time constants of speed block No. 1 to 8. The usable speed block Nos. depend on the feeding system and the number of occupied stations. The decimal value converted from the 2 lower digits of the code No. corresponds to the speed block No.	The acceleration time constant set to the requested speed block No. is returned.
0A01 to 0A08	Deceleration time constant of speed block Reads the deceleration time constants of speed block No. 1 to 8. The usable speed block Nos. depend on the feeding system and the number of occupied stations. The decimal value converted from the 2 lower digits of the code No. corresponds to the speed block No.	The deceleration time constant set to the requested speed block No. is returned.
0B01 to 0B08	Acceleration/deceleration time constant of speed block Reads the acceleration/deceleration time constants of speed block No. 1 to 8. The usable speed block Nos. depend on the feeding system and the number of occupied stations. These code Nos. are used when S-pattern acceleration/deceleration is selected. The decimal value converted from the 2 lower digits of the code No. corresponds to the speed block No.	The acceleration/deceleration time constant set to the requested speed block No. is returned.
0C01 to 0C08	S-pattern time constant of speed block Reads the S-pattern time constants of speed block No. 1 to 8. The usable speed block Nos. depend on the feeding system and the number of occupied stations. These code Nos. are used when S-pattern acceleration/deceleration is selected. The decimal value converted from the 2 lower digits of the code No. corresponds to the speed block No.	The S-pattern time constant set to the requested speed block No. is returned.

(2) Write instruction codes

Set the code No. corresponding to the item to Instruction code (RWw2) and the written data to Writing data (RWw3). The codes and answer data are all 4-digit hexadecimal numbers.

Setting any code No. that is not given in this section will set the error code ($\Box \Box 1 \Box$) to Answer code (RWR2).

Code No.	Item	Writing data (RWw ₃) contents (RLC \rightarrow Serve amplifier)
8000	Empty	(FLC / Servo ampliner)
to	Empty	
800F		
8010	Alarm reset command	1EA5
	Deactivates the alarm that occurred.	
	This function is the same as that of the input signal of	
	device No. RY1A or RY3A.	
8100	Current position display data is clear	1EA5
	Resets the display data of the status indication	
	"current position" to 0.	
8101	Feedback pulse value display data is clear	1EA5
	Resets the display data of the status indication	
	"feedback pulse value" to 0.	
8200	Parameter setting (RAM)	Convert the decimal values into hexadecimal before
	PAM These values are cleared when never is	making setting.
0241	switched off	
	The decimal value converted from the 2 lower digits of	
	the code No. corresponds to the parameter No.	
8300	Parameter setting (EEP-ROM)	Convert the decimal values into hexadecimal before
to	Writes the values set in parameter No. 0 to 79 to	making setting.
834F	EEP-ROM. Written to EEP-ROM, these values are	
	held if power is switched off.	
	The decimal value converted from the 2 lower digits of	
	the code No. corresponds to the parameter No.	
8400	Position data of position block (RAM)	Convert the values into hexadecimal before making
to	Writes the position data of position block No. 0 to 255	setting.
85FF	to RAM. These values are cleared when power is	
	switched off.	
	The usable position block Nos. depend on the feeding	
	The lower 16 bits are written in even code and the	
	upper 16 bits in odd code	
	Example	
	Instruction code 083A:	
	Lower 16 bits of position block No. 58	
	Instruction code 083B:	
	Upper 16 bits of position block No. 58	
8600	M code of position block (RAM)	Convert the values into hexadecimal before making
to	Writes the M codes of position block No. 0 to 255 to	setting.
86FF	RAM. These values are cleared when power is	
	switched off.	
	The usable position block Nos. depend on the feeding	
	system and the number of occupied stations.	
	I he decimal value converted from the 2 lower digits of	
	the code No. corresponds to the position block No.	

Code No.	Item	Writing data (RW _{w3}) contents (PLC \rightarrow Servo amplifier)
8700	Speed block No. of position block (RAM)	Convert the values into hexadecimal before making
to	Writes the speed block Nos. of position block No. 0 to	setting.
87FF	255 to RAM. These values are cleared when power is	
	switched off.	
	The usable position block Nos. depend on the feeding	
	system and the number of occupied stations.	
	The decimal value converted from the 2 lower digits of	
	the code No. corresponds to the position block No.	
8801	Rotational speed of speed block (RAM)	Convert the values into hexadecimal before making
to	Writes the speeds of speed block No. 1 to 8 to RAM.	setting.
8808	These values are cleared when power is switched off.	
	The usable speed block Nos. depend on the feeding	
	system and the number of occupied stations.	
	The decimal value converted from the 2 lower digits of	
	the code No. corresponds to the speed block No.	
8901	Acceleration time constant of speed block (RAM)	Convert the values into hexadecimal before making
to	Writes the acceleration time constants of speed block	setting.
8908	No. 1 to 8 to RAM. These values are cleared when	
	power is switched off.	
	The usable speed block Nos. depend on the feeding	
	system and the number of occupied stations.	
	The decimal value converted from the 2 lower digits of	
	the code No. corresponds to the speed block No.	
8A01	Deceleration time constant of speed block (RAM)	Convert the values into hexadecimal before making
to	Writes the deceleration time constants of speed block	setting.
8A08	No. 1 to 8 to RAM. These values are cleared when	
	power is switched off.	
	The usable speed block Nos. depend on the feeding	
	system and the number of occupied stations.	
	The decimal value converted from the 2 lower digits of	
	the code No. corresponds to the speed block No.	
8B01	Acceleration/deceleration time constant of speed block	Convert the values into hexadecimal before making
to	(RAM)	setting.
8B08	Writes the acceleration/deceleration time constants of	
	speed block No. 1 to 8 to RAM. These values are	
	cleared when power is switched off.	
	The usable speed block Nos. depend on the feeding	
	system and the number of occupied stations.	
	The decimal value converted from the 2 lower digits of	
	These and Nes are used when S nottern	
	acceleration/deceleration is selected	
8C01	S nottern time constant of speed block (PAM)	Convert the values into hevedesimal before making
to	Writes the S-nattern time constants of speed block No.	setting
80.08	1 to 8 to RAM. These values are cleared when power	Sector.B.
0000	is switched off.	
	The usable speed block Nos depend on the feeding	
	system and the number of occupied stations	
	The decimal value converted from the 2 lower digits of	
	the code No. corresponds to the speed block No.	
	These code Nos. are used when S-pattern	
	acceleration/deceleration is selected.	
Code No.	Item	Writing data (RWw ₃) contents (PLC \rightarrow Servo amplifier)
----------	--	--
8D00	Position data of position block (EEP-ROM)	Convert the values into hexadecimal before making
to	Writes the position data of position block No. 1 to 8 to	setting.
8E07	EEP-ROM. Written to EEP-ROM, these values are	
	held if power is switched off.	
	The usable position block Nos. depend on the feeding	
	system and the number of occupied stations.	
	The lower 16 bits are written in even code and the	
	upper 16 bits in odd code.	
	Example	
	Instruction code 8D03:	
	Lower 16 bits of position block No. 3	
	Instruction code 8E03:	
	Upper 16 bits of position block No. 3	
8F00	M code of position block (EEP-ROM)	Convert the values into hexadecimal before making
to	Writes the M codes of position block No. 0 to 7 to EEP-	setting.
8F07	ROM. Written to EEP-ROM, these values are held if	
	power is switched off.	
	The usable position block Nos. depend on the reeding	
	The decimal value converted from the 2 lower digits of	
	the code No, corresponds to the position block No	
9000	Speed block No. of position block (EEP-ROM)	Convert the values into hevadecimal before making
to	Writes the speed block Nos of position block No 0 to 7	setting
9007	to EEP-ROM. Written to EEP-ROM, these values are	secting.
	held if power is switched off.	
	The usable position block Nos. depend on the feeding	
	system and the number of occupied stations.	
	The decimal value converted from the 2 lower digits of	
	the code No. corresponds to the position block No.	
9101	Rotational speed of speed block (EEP-ROM)	Convert the values into hexadecimal before making
to	Writes the speeds of speed block No. 1 to 8 to EEP-	setting.
9108	ROM. Written to EEP-ROM, these values are held if	
	power is switched off.	
	The usable speed block Nos. depend on the feeding	
	system and the number of occupied stations.	
	The decimal value converted from the 2 lower digits of	
	the code No. corresponds to the speed block No.	
9201	Acceleration time constant of speed block (EEP-ROM)	Convert the values into hexadecimal before making
to	Writes the acceleration time constants of speed block	setting.
9208	No. 1 to 8 to EEP-ROM. Written to EEP-ROM, these	
	values are held if power is switched off.	
	The usable speed block inos. depend on the feeding	
	The decimal value converted from the 2 lower disting of	
	the code Ne, corresponde to the speed block Ne	
	the code two. corresponds to the speed block two.	

3. CC-LINK COMMUNICATION FUNCTIONS

Code No.	ltem	Writing data (RWw ₃) contents (PLC \rightarrow Servo amplifier)
9301	Deceleration time constant of speed block (EEP-ROM)	Convert the values into hexadecimal before making
to	Writes the deceleration time constants of speed block	setting.
9308	No. 1 to 8 to EEP-ROM. Written to EEP-ROM, these	
	values are held if power is switched off.	
	The usable speed block Nos. depend on the feeding	
	system and the number of occupied stations.	
	The decimal value converted from the 2 lower digits of	
	the code No. corresponds to the speed block No.	
	These codes are used when linear	
	acceleration/deceleration is selected.	
9401	Acceleration/deceleration time constant of speed block	Convert the values into hexadecimal before making
to	(EEP-ROM)	setting.
9408	Writes the acceleration/deceleration time constants of	
	speed block No. 1 to 8 to EEP-ROM. Written to EEP-	
	ROM, these values are held if power is switched off.	
	The usable speed block Nos. depend on the feeding	
	system and the number of occupied stations.	
	The decimal value converted from the 2 lower digits of	
	the code No. corresponds to the speed block No.	
	These code Nos. are used when S-pattern	
	acceleration/deceleration is selected.	
9501	S-pattern time constant of speed block (EEP-ROM)	Convert the values into hexadecimal before making
to	Writes the S-pattern time constants of speed block No.	setting.
9508	1 to 8 to EEP-ROM. Written to EEP-ROM, these	
	values are held if power is switched off.	
	The usable speed block Nos. depend on the feeding	
	system and the number of occupied stations.	
	The decimal value converted from the 2 lower digits of	
	the code No. corresponds to the speed block No.	
	These code Nos. are used when S-pattern	
	acceleration/deceleration is selected.	

3.5.5 Answer codes (RWR2)

If any of the monitor codes, instruction codes, position command data/position block Nos., speed command data/speed block Nos. set to the remote register is outside the setting range, the corresponding error code is set to Answer code (RWw2). "0000" is set if they are normal.

Code No.	Error	Details
0	Normal answer	Instruction was completed normally.
1	Code error	 The monitor code not in the specifications was set to RWw0 • RWw1. The instruction code not in the specifications was set to RWw2. Read/write of the position block data of No. 256 or later was set to
		RWw2. • Read/write of the speed block data of No. 9 or later was set to RWw2.
2	Parameter • point table selection error	 The parameter No. disabled for reference was set to RWw2. Read/write of the position block data of No. 8 or later was set when 1 station was occupied. Write of acceleration/deceleration time constant was set when S-pattern acceleration/deceleration was selected, or write of S-pattern acceleration/deceleration time constant was set when linear acceleration/deceleration was selected.
3	Write range error	 An attempt was made to write the parameter or point table value outside the setting range to RW_{W3}. The position command data/position block No./speed command data/speed block No. outside the setting range was set to RW_{W4} • RW_{W5} • RW_{W6}.

3.5.6 Setting the CN1 external input signals

Using parameter No. 66, you can assign the input signals as the CN1 external input signals. The signals assigned as the CN1 external input signals cannot be used in CC-Link. Refer to Section 3.5 for the pins to which signals can be assigned.

(1) Positioning system

In the initial status, the forward rotation stroke end, reverse rotation stroke end and proximity dog are preset to be usable as the CN1 external input signals.

(2) Roll feeding system

3.6 Data communication timing charts

3.6.1 Monitor codes

(1) When 1 station is occupied Monitor 1 (RWwo) Monitor 2 (RWw₁) Monitor execution ON demand (RYC) OFF ON Monitoring (RXC) OFF Monitor 1 data (RWR0) Monitor 2 data (RWR1) Answer code (RWR2) Data HOLD

Set the monitor codes (refer to Section 3.5.3) to Monitor 1 (RWwo) and Monitor 2 (RWw1) and turn Monitor output execution demand (RYC) to "1" (ON). Turning RYC to "1" (ON) sets the next data. Data are all hexadecimal numbers. At this time, Monitoring (RXC) turns to "1" (ON) at the same time.

Monitor data 1 (RWR0): Data demanded by Monitor 1 (RWw0) Monitor data 2 (RWR1): Data demanded by Monitor 2 (RWw1) Answer code (RWR2): Normal or error answer code

For 32-bit data, set the lower 16 bits of the monitor code to Monitor 1 (RWw_0) and the upper 16 bits to Monitor 2 (RWw_1) and read them simultaneously.

The monitor data set to the remote register are always updated while RXC is "1" (ON).

When RXC turns to "0" (OFF), the data set to Monitor data RWR0, RWR1 are held. If the monitor code not in the specifications is set to either Monitor 1 (RWw0) or Monitor 2 (RWw1), the corresponding error code ($\Box \Box \Box 1$) is set to Answer code.

(2) When 2 stations are occupied

Set the monitor codes (refer to Section 3.5.3) to Monitor 1 (RWwo) and Monitor 2 (RWwi) and turn Monitor output execution demand (RYC) to "1" (ON). Turning RYC to "1" (ON) sets the next data. 32-bit data are all divided into the upper 16 bits and lower 16 bits, and set to the remote register. Data are all hexadecimal numbers. At this time, Monitoring (RXC) turns to "1" (ON) at the same time.

Monitor data 1 under 16 bit (RWR0): Lower 16 bits of data demanded by Monitor 1 (RWw0) Monitor data 1 upper 16 bit (RWR1): Upper 16 bits of data demanded by Monitor 1 (RWw0) Monitor data 2 under 16 bit (RWR5): Lower 16 bits of data demanded by Monitor 2 (RWw1) Monitor data 2 upper 16 bit (RWR6): Upper 16 bits of data demanded by Monitor 2 (RWw1)

A sign is set if data does not exist in RWR1 • RWR6. A "+" sign is indicated by "0000", and "-" by "FFFF". The monitor data set to the remote register are always updated while RXC is "1" (ON). When RXC turns to "0" (OFF), the data set to Monitor data RWR0, RWR1, RWR5, RWR6 are held. If the monitor code not in the specifications is set to either Monitor 1 (RWw0) or Monitor 2 (RWw1), the corresponding error code ($\Box \Box \Box \Box$ 1) is set to Answer code.

3.6.2 Instruction codes

(1) Read instruction codes (0000 to 7FFh)

Set the read instruction code (refer to Section 3.5.4 (1)) to Instruction code (RWw_2) and turn Instruction code execution demand (RYD) to "1" (ON). Turning RYD to "1" (ON) sets the data corresponding to the preset read code to Reading data (RW_{R3}). Data are all hexadecimal numbers. At this time, Instruction code execution completion (RXD) turns to "1" (ON) at the same time.

Read the read data set to RWR3 while RXD is "1" (ON). The data set to Reading data (RWR3) is held until the next read instruction code is set and RYD is turned to "1" (ON).

If the instruction code not in the specifications is set to Instruction code (RWw₂), the corresponding error code ($\Box \Box 1 \Box$) is set to Answer code. If any unusable parameter, position block or speed block is read, the corresponding error code ($\Box \Box 2 \Box$) is set.

Turn Instruction code execution demand (RYD) to "0" (OFF) after completion of data read.

Instruction code (RWw2) Writing data (RWw3) Instruction code execution demand (RYD) Instruction code processing Instruction code execution completion (RXD) Answer code (RWk2)

(2) Write instruction codes (80000 to FFFh)

Set the write instruction code (refer to Section 3.5.4 (2)) to Instruction code (RWw₂) and the data to be written (data to be executed) to Writing data (RWw₃) in hexadecimal, and turn Instruction code execution demand (RYD) to "1" (ON).

Turning RYD to "1" (ON) sets the data set in Wiring data (RWw3) to the item corresponding to the write instruction code. When write is executed, Instruction code execution completion (RXD) turns to "1" (ON).

If the instruction code not in the specifications is set to Instruction code (RWw₂), the corresponding error code ($\Box \Box 1 \Box$) is set to Answer code.

Turn Instruction code execution demand (RYD) to "0" (OFF) after Instruction code execution completion (RXD) has turned to "1" (ON).

3.6.3 Position and speed commands

The functions in this section are usable only when 2 stations are occupied.

This section shows the timing charts for specifying the position block No., speed block No., position command data and speed command data as word data.

(1) When specifying the position block No.

Preset "

Position block No. (RW _{W4})	-	
Position instructio demand (RY10)	ⁿ ON OFF -	
Position block No. designation Position instruction execution completion (RX10)	ON OFF-	(Note) Data reserved
Answer code (RW _{R2}) Forward/reverse rotation start (RYA • RYB)	ON OFF -	5ms

Note. This data is stored into RAM of the servo amplifier. Hence, the data is cleared when power is switched off.

Set the position block No. to Position block No. (RWw4) and turn Position instruction demand (RY10) to "1" (ON).

Turning RY10 to "1" (ON) stores the position block No. into RAM of the servo amplifier.

When the data is stored, Position instruction execution completion (RX10) turns to "1" (ON).

If data outside the setting range is set to Position block No. (RWw4), the error code (refer to Section 3.5.5) is set to Answer code.

Turn Forward rotation start (RYA)/Reverse rotation start (RYB) to "1" (ON) after Position instruction execution completion (RX10) has turned to "1" (ON).

(2) When setting the position command data and specifying the speed block No.

Preset " $\Box \Box \Box$ 1" in parameter No. 65 to enable position command data-set and speed block No.-specified operation.

Note. This data is stored into RAM of the servo amplifier. Hence, the data is cleared when power is switched off.

Set the lower 16 bits of the position instruction data to Position instruction data under 16 bit (RWw4), the upper 16 bits of the position instruction data to Position instruction data upper 16 bit (RWw5), and speed block No. to Speed block No. (RWw6), and turn Position instruction demand (RY10) and Speed instruction demand (RY11) to "1" (ON).

Turning RY10 and RY11 to "1" (ON) stores the position command data and speed block No. into RAM of the servo amplifier.

When the data are stored, Position instruction execution completion (RX10) and Speed instruction execution completion (RX11) turn to "1" (ON).

If data outside the setting range is set to any of Position instruction data under 16 bit (RWw4), Position instruction data upper 16 bit (RWw5) and Speed block No. (RWw6), the error code (refer to Section 3.5.5) is set to Answer code.

Turn Forward rotation start (RYA) \cdot Reverse rotation start (RYB) to "1" (ON) after Position instruction execution completion (RX10) and Speed instruction execution completion (RX11) have turned to "1" (ON).

3. CC-LINK COMMUNICATION FUNCTIONS

(3) When setting the position command data and speed command data

Preset " $\Box \Box \Box 2$ " in parameter No. 65 to enable position command data- and speed command data-set operation. As the acceleration \cdot deceleration time constant for operation, use the setting of speed block No. 1.

Position instruction Lower 16bit (RWw4)	data	
Position instruction Upper 16bit (RWws)	data	
Speed instruction da (RWw6)	ata	
Position instruction demand (RY10)	ON OFF	
Speed instruction demand (RY11)	ON OFF	
Position • speed data setting		(Note) Data reserved
Position instruction execution completion (RX10)	ON on OFF	
Speed instruction execution completion (RX11)	ON on OFF	
Answer code (RW _{R2})		5ms
Forward rotation • Reverse rotation start (RYA • RYB)	ON OFF	

Note. This data is stored into RAM of the servo amplifier. Hence, the data is cleared when power is switched off.

Set the lower 16 bits of the position instruction data to Position instruction data under 16 bit (RWw4), the upper 16 bits of the position instruction data to Position instruction data upper 16 bit (RWw5), and speed instruction data to Speed instruction data (RWw6), and turn Position instruction demand (RY10) and Speed instruction demand (RY11) to "1" (ON).

Turning RY10 and RY11 to "1" (ON) stores the position command data and speed command data into RAM of the servo amplifier.

When the data are stored, Position instruction execution completion (RX10) and Speed instruction execution completion (RX11) turn to "1" (ON).

If data outside the setting range is set to any of Position instruction data under 16 bit (RWw4), Position instruction data upper 16 bit (RWw5) and Speed command data (RWw6), the error code (refer to Section 3.5.5) is set to Answer code.

Turn Forward rotation start (RYA) \cdot Reverse rotation start (RYB) to "1" (ON) after Position instruction execution completion (RX10) and Speed instruction execution completion (RX11) have turned to "1" (ON).

3.7 Function-by-function programming examples

This section explains specific programming examples for servo operation, monitor, parameter read and write, and others on the basis of the equipment makeup shown in Section 3.7.1.

3.7.1 System configuration example

As shown below, the CC-Link system master • local module is loaded to run two servo amplifiers (1 station occupied).

3.7.2 Master station parameter setting

Write the CC-Link parameters and CC-Link master station to the buffer memory of the CC-Link system master • local module.

(1) Parameter setting items

The following table indicates the items to be set to "parameter information area (addresses 0H to 5FH)" of the master station buffer memory.

Setting item	Description	Buffer memory address
Number of stations connected	Set the number of remote and local stations connected to the master station. (Including the reserved stations) Default value: 42 Setting range: 1 to 64	1н
Retry count	Set the number of retries for a communication error. Default value: 3 (times) Setting range: 1 to 7 (times)	2н
Number of automatic return stations	Set the number of remote and local stations that can return to the system at 1 link scan. Default value: 1 (stations) Setting range: 1 to 10 (stations)	3н
CPU fault-time operation designation	Specify the data link status at occurrence of master station PLC CPU fault. Default value: 0 (stop) Setting range: 0 (stop) : 1 (continued)	4н
Reserved station designation	Specify the reserved station.Default value:0 (no setting)Setting range:Turn ON the bit corresponding to the station number.	1 0 н to 13н
Invalid station designation	Specify the invalid station. Default value: 0 (no setting) Setting range: Turn ON the bit corresponding to the station number.	14н to 17н
Station information	Set the types of the remote and local stations connected. Default value: 0101 ^H (remote I/O station, 1 station occupied, station 1) to 0140 ^H (remote I/O station, 1 station occupied, station 64) Setting range: See below. b15 to b12 b11 to b8 b7 to b0 Number of Station type occupied stations Station number 1 to 64 2: 2 stations occupied 3: 3 stations occupied 4: 4 stations occupied 0: Remote I/O station 1: Remote device station 2: Intelligent device station 3: Reserved station	20н (first station) to 5Fн (64th station)

(2) Program examples

(a) For debugging

0		X0F				(PLS	M300	3
5	мзоо					[SET	M301	Ъ
7	M301				[моv	К2	DO	Number of stations connected
					[моv	кз	D1	Retry count
					——[моv	К1	D2	Number of automatic return
			(TO	НО	H1	DO	кз	stations
					(моv	КО	D3	CPU fault-time operation
			{TO	HO	H6	D3	К1	designation (stop)
46	M301				[моv	H1101	D4	MR-H TN (Station 1)
					[моv	H1102	D5	MR-H TN (Station 2)
			(то	HO	H20	D4	К2	³ Station information
						[RST	M301	ł
67	м9038					[SET	YO	Ъ
69	xo /ł	XOF				(PLS	M302	3
74	M302					[SET	M303	Ъ
76	мзоз					[SET	Y6	Ъ
78	X6 					[RST	Y6	} On normal completion of data
						[RST	M303	link start by buffer memory
81	X7 ↓		(FROM	HO	H668	D100	К1	
						[RST	Y6	On abnormal completion of data
						[RST	M303	parameter
93	X30	XO XOF				(PLS	M304	ł
99	Registrat M304	tion command				[SET	M305	3
101	M305					[SET	YOA	ł
103						[RST	YOA	
						[RST	M305	registration to EEP-ROM
106	хов		(FROM	НО	H6B9	D101	К1	1 3
			-			[RST	YOA	On abnormal completion of parameter
						(RST	M305	registration to EEP-ROM
CIF	RCUIT E	IND						۳۶.

3. CC-LINK COMMUNICATION FUNCTIONS

(b) CC-Link master station parameter setting (for operation) - initial setting

3.7.3 Reading the servo amplifier status

Read the status of the servo amplifier from the master station buffer memory. The servo amplifier status is always stored in the remote input RX (addresses E0H to 15FH). Read the servo amplifier status (in positioning mode) of station 1 to $M0 \sim M31$.

3.7.4 Writing the operation commands

To operate the servo amplifier, write the operation commands to the remote output RY (addresses 160H to 1DFH). Perform positioning operation of position block No. 2 for the servo amplifier of station 2.

3.7.5 Reading the data

Read various data of the servo amplifier.

(1) Reading the monitor value

Read the "feedback pulse value" of the servo amplifier of station 2 to D1.

Data No.	Description
H000A	Lower 16-bit data of feedback pulse value
H000B	Upper 16-bit data of feedback pulse value

0	M9036 H M212 H	(FROM (FROM	но	HOE2 H2E6	K4M200 D9	K2 K1	} }	Reads remote input (RX20 to RX3F) of buffer memory to M200 ~M231. Stores answer code to D9.
	{= ко вэ]					—(мо	×	Outputs M0 for normal reply.
26				(MOV	HOA	D100	}	
	Read setting			——[моv	HOB	D101	}	Sets monitor code (HOA) of feedback pulse value (lower 16 bits) to RWw4.
		[TO	НО	H2E4	D100	К1	}	Sets monitor code (HOB) of feedback pulse value (upper 16 bits) to RWw5.
		—[то	HO	H2E5	D101	К1	3	J
					{SET	M112	}	Turns on monitor command (RY2C).
		—(DFRO	НО	H2E4	D1	к2	}	Reads data to RWR4 and RWR5 of buffer memory when answer code is normal reply.
69		—(то	HO	H162	K4M100	К2	3	Writes M100 \sim M131 to remote output (PV20 to PV2E) of buffer memory
79					[RST	M112	}	Monitor stop

(2) Reading the parameter

Read parameter No. 2 "Feeding system \cdot regenerative brake option selection" of the servo amplifier of station 2 to D1.

Data No.	Description
H8302	Parameter No. 2 setting (hexadecimal)

The answer code at instruction code execution is set to D9.

0	M9036	[FROM	HO	HOE2	K4M200	К2	Reads remote i of buffer memor	nput (RX20 to RX3F) ry to M200 \sim M231.
10-	M213	-(FROM	HO	H2E6	D9	K1		
	(= ко D9]					—(мо	Outputs M0 for	normal reply.
26 -					[PLS	M302		
33 -	M302 Read Setting				[SET	M303		
35 -	M303			—[МОУ	H8302	D100	Writes paramet	er No. 2 read
		[TO	но	H1E6	D100	К1	(H8302) to RW	W6.
					[SET	M113	Turns on instruction demain	ction code and (RY2D).
51 -		-(FROM	HO	H2E7	D1	К1	Reads RWR7 of	buffer
					[RST	M113	code is normal	reply.
					[RST	M303	Turns off instruction demain	ction code and (RY2D).
63	M9036	(TO	но	H162	K4M100	К2	Writes M100~ output (RY20 to buffer memory.	M131 to remote RY3F) of

(3) Reading the alarm definition

Read the alarm definition of the servo amplifier of station 2 to D1.

Data No.	Description
H0010	Occurring alarm/warning No. (hexadecimal)

The answer code at instruction code execution is set to D9.

0	M9036 	—(FROM —(FROM	но	H0E2 H2E6	K4M200 D9	к2 К1	} }	Reads remote input (RX00 to RX2F) of buffer memory to M200 \sim M231. Stores answer code to D9.
	(= ко вэ]					—(мо	X	Outputs M0 for normal reply.
26	X0 X0F X1 X30				—[PLS	M302	ł	
33					[SET	M303	Э	
35	M303			—[МОV	H10	D100	۶Į	Writes current alarm read (H0010)
		- (TO	НО	H1E6	D100	К1	з∫	to RWw6.
					[SET	M113	Э	Turns on instruction code execution demand (RY2D).
51		-[FROM	HO	H2E7	D1	K1	ł	Reads RWR7 of buffer memory to D1 when answer code is normal reply.
					[RST	M113	Ъ	Turns off instruction code execution demand (RY2D).
					[RST	M303	Э	
63	M9036 	[TO	HO	H162	K4M100	К2	ł	Writes M100 \sim M131 to remote output (RY20 to RY3F) of buffer memory.

3.7.6 Writing the data

This section explains the programs for writing various data to the servo amplifier.

(1) Writing the speed command data (servo motor speed)

Change the speed command data in the speed block No. 1 of the servo amplifier of station 2 to 100.

Data No.	Description								
H8801	Write of speed command data of speed block No. 1 (hexadecimal)								
H0064	Speed command data of speed block No. 1 (hexadecimal)								

The answer code at instruction code execution is set to D2.

(2) Writing the parameter

Change parameter No. 8 "JOG speed" of the servo amplifier of station 2 to 100.

Data No.	Description
H8308	Parameter No. 8 write (hexadecimal)
H0064	Set data (hexadecimal)

The answer code at instruction code execution is set to D2.

0	м9036 —		-(FROM	HO	H0E2	K4M200	К2	ł	Reads remote input (RX20 to RX3F) of buffer memory to M200 \sim M231.
10	X0 /ł					—[PLS	M302	ŀ	
17	M302	Nedu Setting				[SET	M303	}	
19	M303				—[моv	H8308	D100	3)	
					—[моv	H64	D101	Ъ	Writes parameter No. 8 write (H8308) to RWw6 and data (H64) to RWw7.
			[TO	HO	H1E6	D100	K2	y)	
						[SET	M113	3	Turns on instruction code execution demand (RY2D).
40	M213		-[FROM	НО	H2E6	D2	К1	3	Reads RWR6 to D2 when instruction code execution completion (RX2D)
						[RST	M113	ł	Turns on. Turns off instruction code execution demand (RY2D).
						[RST	M303	ł	
52	M9036 ──┤		-(TO	HO	H162	K4M100	К2	3	Writes M100 \sim M131 to remote output (RY20 to RY3F) of buffer memory.

- (3) Servo amplifier alarm resetting program examples
 - (a) Deactivate the alarm of the servo amplifier of station 2 by providing output from the PLC to the servo.

(b) Deactivate the alarm of the servo amplifier of station 2 using the instruction code.

Data No.	Description
H8010	Alarm reset command (hexadecimal)
H1EA5	Execution data (hexadecimal)

The answer code at instruction code execution is set to D2.

0	M9086		[FROM	но	HOE2	K4M200	K2	3	Reads remote input (RX20 to RX3F)
10	X0 //	X0F X1 X30 Reset command				—[PLS	M302	3	
17	H					[SET	M303	}	
19	мзоз —				[МОV	H8010	D100	3	
					—[моv	H1EA5	D101	}	Writes alarm reset command (H8010) to RWwe and execution data (H1EA5) to RWw7.
			[TO	HO	H1E6	D100	К2	3	
						[SET	M113	3	Turns on instruction code execution demand (RY2D).
40	M213		-(FROM	HO	H2E6	D2	К1	}	Reads RWR6 to D2 when instruction code execution completion (RX2D)
						[RST	M113	}	turns on.
						[RST	M303	}	
52	M9036		-(TO	HO	H162	K4M100	К2	}	Writes M100 \sim M131 to remote output (RY20 to RY3F) of buffer memory.

3.7.7 Operation

Perform JOG operation (roll feeding mode) of the servo amplifier of station 1 and read the "current position" data.

Data No.	Description
H0001	Lower 16-bit data of current position
H0002	Upper 16-bit data of current position

3.8 Continuous operation program example

This section shows a program example which includes a series of communication operations from a servo start. The program will be described on the basis of the equipment makeup shown in Section 3.8.1.

3.8.1 System configuration example

As shown below, the CC-Link system master \cdot local module is loaded to run one servo amplifier (1 station occupied).

3.8.2 Program example

Operate the servo amplifier of station 1 in the positioning mode and read the "current position" data.

Operation: Alarm reset, dog type zeroing, JOG operation, automatic operation under point table command

Data No.	Description				
H0001	Lower 16-bit data of current position				
H0002	Upper 16-bit data of current position				

3. CC-LINK COMMUNICATION FUNCTIONS

MEMO

4. POSITIONING SYSTEM

4.1 Positioning system specifications

	Item		Specifications					
		Operational specifications	Position block number is specified for positioning.					
	Point table number input	Position command input	 You can select 8 points when 1 station is occupied or 256 points when 2 stations are occupied. Feed length setting range for 1 position: +1um to +999 999m 					
system		Speed command	Speeds and acceleration/deceleration times are selected from those in 8 speed blocks					
s pr		System	Absolute command (signed)/incremental command					
Commar		Operational						
	Desition command	specifications	Remote register setting is used for positioning.					
	data input	Position command	 Remote register is used to set position command data. 					
	(when 2 stations are	input	 Feed length input setting range: ±1µm to ±999.999m 					
	occupied)	Speed command	 Remote register is used to make selection from 8 speed blocks. 					
	occupica)	input	 Remote register is used to set speed command data (speed). 					
		System	Absolute command (signed)/incremental command					
	Automatic mode		Positioning operation is performed once under the speed/position commands					
		JOG	JOG operation is performed by the parameter unit or contact input under the speed command.					
	Manual mode	Manual pulse generator (MR-HDP01)	 Manual pulse generator (MR-HDP01) is used for manual feed. Input pulse specifications: 2-phase pulse train with 90° phase difference (A phase R phase) 					
			 Input pulse form: open collector input Max. input pulse frequency: open collector input 200kpps 120000r/min for MR-HDP01 					
			 Parameter setting is used to select the multiplying factor (×1, ×10, ×100) of the manual pulse generator input pulses. When 2 stations are occupied, the input signal is used to choose the list bit of the (×1, ×10, ×100). 					
peration mode		Dog type	 Z-phase pulse given past the proximity dog is used for zeroing. Zero address can be set. Zero shift can be performed. Zeroing direction can be selected. Zeroing can be started automatically after a return from the limit. Zeroing can be started automatically after a return from the dog. 					
Ope	(Note) Manual zeroing mode	Jote) anual zeroing Count type ode	 Detector pulses counted after contact with the proximity dog are used for zeroing. Zero address can be set. Zero shift can be performed. Zeroing direction can be selected. Zeroing can be started automatically after a return from the limit. Zeroing can be started automatically after a return from the dog. 					
		Data setting type	Dog is not used for zeroing. Any position can be set as a home position by manual operation, etc. Zero address can be set. 					
		Stopper type	Dog is not used for zeroing. Stop position can be set as a mechanical home position. Zero address can be set. 					
	Automatic positioning to home position		High-speed automatic return to a defined home position.A second home position can be set.					

Note:Similar function is also available for home position setting in absolute position detection system.

Item	Specifications
Functions of positioning control	 Absolute position detection Teaching function: Teaching can be performed by the parameter unit. M code output: 0 to 3 when 1 station is occupied or 00 to 99 when 2 stations are occupied Acceleration/deceleration method setting (S-shaped acceleration/deceleration, separate settings for acceleration and deceleration) Backlash compensation Alarm code is output.

4.2 Standard connection examples

CAUTION

 Any person who is involved in wiring should be fully competent to do the work. Before starting wiring, make sure that the charge lamp is off more than 10 minutes after power-off, and then confirm that the voltage across terminals P-N is safe with a tester or similar device. Otherwise, you may get an electric shock. Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you may get an electric shock. The cables should not be damaged, stressed excessively, loaded heavily, or pinched. Otherwise, you may get an electric shock. 				
 Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate, resulting in injury. Connect cables to correct terminals to prevent a burst, fault, etc. Ensure that polarity (+,-) is correct. Otherwise, a burst, fault, etc. may occur. The surge absorbing diode installed to the DC relay designed for control output should be fitted in the specified direction. Otherwise, the signal is not output due to a fault, disabling the forced stop and other protective circuits. 				

- Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be given to electronic equipment used near the servo amplifier.
- Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF option) with the power line of the servo amplifier.
- When using the regenerative brake resistor, switch power off with the alarm signal. Otherwise, a transistor fault or the like may overheat the regenerative brake resistor, causing a fire.
- Do not modify the equipment.

POINT

• Refer to Section 6.3 for connection of the power supply system, Section 6.4 for connection with the servo motor, and Section 3.2.2 for connection of CC-Link.

4.2.1 In factory-shipped status

In the factory-shipped status, the forward rotation stroke end, reverse rotation stroke end and proximity dog are valid as the CN1 external input signals.

Refer to the next page for Note.

4. POSITIONING SYSTEM

- Note:1. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the forced stop and other protective circuits.
 - 2. The forced stop switch must be installed.
 - 3. The sum of currents that flow in the external relays should be 200mA max. If it exceeds 200mA, supply interface power from external.
 - 4. When using the internal power supply (VDD) as the interface power supply, always connect VDD-VIN. Keep them open when supplying external power.
 - 5. Change the setting of parameter No.52 to " $\Box \Box \Box \Box$ " to use LA, LAR, LB, LBR, LZ and LZR as encoder pulse outputs.
 - 6. Can be used as the CN1 external input signals in the initial status of parameter No. 66.
 - 7. Change the setting of parameter No.44 to " $\Box \Box \Box \Box$ 1" to use INP and CPO as an M code.
 - 8. Change the setting of parameter No.3 to "□□1□" to use CPO as an electromagnetic brake interlock or the setting of parameter No.44 to "□1□□" to use CPO as a torque limit-in-progress.
 - 9. ALM-SG are connected in a normal status, i.e. when there is no alarm.
 - 10. The upper limit of the overriding speed is the permissible speed.

4.2.2 Input signals assigned to CN1

The following connection diagram assumes that the input signals that may be assigned to CN1 have all been assigned in the setting of parameter No. 66.

4. POSITIONING SYSTEM

- Note:1. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the forced stop and other protective circuits.
 - 2. The forced stop switch must be installed.
 - 3. The sum of currents that flow in the external relays should be 200mA max. If it exceeds 200mA, supply interface power from external.
 - 4. When using the internal power supply (VDD) as the interface power supply, always connect VDD-VIN. Keep them open when supplying external power.
 - 5. Change the setting of parameter No.52 to " $\Box \Box \Box \Box$ " to use LA, LAR, LB, LBR, LZ and LZR as encoder pulse outputs.
 - 6. Can be used as the CN1 external input signals in the setting of parameter No. 6.
 - 7. Can be used as the CN1 external input signals in the initial status of parameter No. 66.
 - 8. Cannot be used when 2 stations are occupied.
 - 9. Change the setting of parameter No.44 to " $\Box \Box \Box \Box$ 1" to use INP and CPO as an M code.
 - 10. Change the setting of parameter No.3 to "□□1□" to use CPO as an electromagnetic brake interlock or the setting of parameter No.44 to "□1□□" to use CPO as a torque limit-in-progress.
 - 11. ALM-SG are connected in a normal status, i.e. when there is no alarm.
 - 12. The upper limit of the overriding speed is the permissible speed.

4.3 I/O connectors

4.3.1 Connector signal layouts

POINT
The pin-outs of each connector are as viewed from the wiring section of the cable connector.

CN2 (For encoder signal) Type PCR-S20FS (Honda Tsushin make) LG LG 13 3 14 4 MRR MR BAT 15 5 16 6 LG P5 17 7 18 LG 8 P5 P5 19 9 20 10 SD

CN1 Type PCR-S50FS (Honda Tsushin make)

	26		1
27	N15R	2	P15R
TI AP	28	OVR	3
29	LG	4	LG
<u> </u>	30	1.0	5
31	LG	6	LAR
FPA	32	IB	7
33	FPB	8	LBR
OP	34	17	9
35	LG	10	LZR
<u> </u>	36	$\overline{\ }$	11
37	$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	12	
DOG	38	SON	13
39	LSP	14	DIO
LSN	40	DI1	15
41	SG	16	DI2
MD0	42	SG	17
43	STP	18	SG
ORG	44	PPO	19
45	ST1	20	NPO
ST2	46	VIN	21
47	EMG	22	VDD
SG	48	VDD	23
49	ALM	24	СРО
RD	50	INP	25
	SD		ZP

CN3	
Type 171822-4 (AMP	make)

(M01) 1 (M02) 2	
(102) 2	님 긔
(M0G) 4	

4.3.2 Signal explanations

Refer to Section 6.2.2 for the I/O interfaces (symbols in the I/O Category field in the table).

(1)	CN1

Signal name	Pin code	Pin No.	Function/Application	I/O category
Digital I/F power supply input	VIN	20	Driver power supply input terminal for digital interface Input 24VDC±10% for input interface. When using an external power supply, connect a 24VDC power supply of 200mA or more to this terminal.	
Driver power supply	VDD	21,22	+24V±10% is output across VDD-SG. Connect with VIN when using this power supply for the digital interface. Permissible current: 200mA	
Open collector power input	OPC	11	When using a manual pulse generator, supply 24VDC to this terminal.	
24V common	SG	16,17 40,47	Common terminals for VDD and VIN. Isolated from LG.	
DC power supply	P15R P15N	1 26	+15VDC is output across P15R-LG. Use as a power supply for OVR/TLAP. Permissible current: 30mA -15VDC is output across P15N-LG. Use as a power supply for OVR/TLAP. Permissible current: 30mA	
Control common	LG	3,28 30,34	Common terminals for OVR, TLAP, LA, LAR, LB, LBR, LZ, LZR, FPA, FPB and OP.	\sum
Shield	SD	50	Connect the servo amplifier end of the shield cable.	\sim
Servo on	SON	12	Refer to Section 3.5.2 (1)(a)	DI-1
Position block number selection bit0	DIO	13		DI-1
Position block number selection bit1	DI1	14		DI-1
Position block number selection bit2	DI2	15		DI-1
Manual pulse	PP0	18	Connect the manual pulse generator (MR-HDP01).	DI-2
generator	NP0	19	Refer to Section 15.1.12 for details.	
Proximity dog	DOG	37	Refer to Section 3.5.2 (1)(a).	DI-1
Forward rotation stroke end	LSP	38		DI-1
Reverse rotation stroke end	LSN	39		DI-1
Automatic operation/manual drive mode	MD0	41		DI-1
Temporary stop	STP	42		DI-1
Zeroing	ORG	43		DI-1
Forward rotation start	ST1	44		DI-1
Reverse rotation start	ST2	45		DI-1
Forced stop	EMG	46	This signal is used for CN1 external input only. Refer to Section 3.5.2 (1)(b).	DI-1
Rough match	CPO	23	Refer to Section 3.5.2 (1)(b).	DO-1
Limiting torque	TLC	(23)	This pin is set to rough match (CPO) in the initial status but can be changed for	DO-1
Electromagnetic brake inter lock	MBR	(23)	use as limiting torque (TLC) or electromagnetic brake interlock (MBR) by setting of parameter No. 3 or 44.	DO-1

Signal name Pin code	Pin	Pin	Function (Application	I/O
	No.	Function/Application	category	
In position	INP	24	Refer to Section 3.5.2 (1)(b).	DO-1
M code bit0	MC0	24		DO-1
M code bit1	MC1	23		DO-1
Zeroing completion	ZP	25		DO-1
Trouble	ALM	48		DO-1
Ready	RD	49		DO-1
Encoder pulse	FPA	31	In CCW rotation of the servo motor, FPA leads FPB by $\pi/2$.	DO-2
(open collector)	FPB	32	Pulses are output in the range 100 to 5000 pulses/rev according to the	
			parameter No. 39 setting.	
Encoder Z-phase	OP	33	Z-phase pulse signal output terminal.	DO-2
pulse			Output the zero-point signal of the servo motor encoder.	
			OP-SG are connected in the zero-point position. The minimum pulse width is	
			approx. 1.77ms.	
External digital	LA	4	External digital display signal output terminal.	DO-2
display signal	LAR	5	When using the MR-DP60 external digital display, connect it to this terminal.	
	LZ	8		
	LZR	9		
Encoder pulse	LA	4	When using the encoder output signal (differential line driver system), make it	DO-2
(differential line	LAR	5	valid in parameter No. 52.	
driver)	LB	6		
	LBR	7		
Override	OVR	2	Apply -10 to $+10V$ across OVR-LG to limit the servo motor speed.	Analog
			0[%] for -10[V], 100[%] for 0[V], 200[%] for 10[V].	input
External analog	TLAP	27	Apply 0 to +10V across TLAP-LG to limit the servo motor-generated torque.	Analog
torque limit			Zero torque for 0[V], max. torque for 10[V].	input
4.3.3 Control input/output signals

(1) Start signals and operation mode select signals

The start signals change as indicated below depending on the operation mode selection conditions. Indicates that the signal is made valid when it is switched from off to on, and $_$ is invalid if switched on during operation. Indicates that the signal is valid while it is on, and $_$ is made invalid when switched off.

Operation mode		Automat	ic operation			Automatic	
Signal		Absolute command	Incremental command	Manual operation	Manual zeroing	positioning to home position	
	Automatic/ Manual Operation	RY7	ON	ON	OFF	OFF	ON
	Zeroing	RY9	OFF	OFF	OFF	ON	ON
CN1 (Note)	Forward rotation start	RYA	1(ON)	1(ON)	1(ON) (Forward rotation JOG)	1(ON)	1(ON) (First zeroing)
	Reverse rotation start	RYB		1(ON)	1(ON) (Reverse rotation JOG)		1(ON) (Second zeroing)
	Temporary stop	RY8	1(ON)	1(ON)		1(ON)	1(ON)
Manual pulse generator							

Note: If you turn on-off RY7/RY9 during operation in the automatic operation mode, the operation mode cannot be changed. The operation mode is switched to the one specified by RY7 and RY9 after completion of positioning to the target position.

- (2) Forward rotation start (RYA) Reverse rotation start (RYB)
 - (a) Make up the sequence so that the start signal is switched on after the main circuit has been set up. The start signal is invalid if it is switched on before the main circuit is set up. Normally interlock is provided between the start signal and ready signal (RX0).
 - (b) In the servo amplifier, a start is executed when the start signal changes from "0" (OFF) to "1" (ON). The internal processing of the servo amplifier delays 3ms maximum. The other signal delays 10ms maximum.

- (c) The start signal (RYA/RYB) is not accepted during operation. The next operation must be started after the rough match signal has been output with the rough match output range set to zero, or after the in-position signal has been output.
- (3) Proximity dog (RY6)

This signal is factory-set to be usable as the CN1 external input signal. Used for dog type and count type manual zeroing as a proximity dog detection signal. RY6 turns to "0" (OFF) to indicate detection of the dog. By setting " $\Box 1 \Box \Box$ " in parameter No. 9, RY6 turns to "1" (ON) to indicate detection.

(4) Zeroing completion (RX3)

This signal turns to "1" (ON) after manual zeroing completion during power-on. After that, it is always "1" (ON). Use the zeroing completion signal (RX3) when making a zeroing request signal for interlock.

(5) Positioning completion signal (RX1)

This signal turns to "1" (ON) when the droop pulse value of the deviation counter is within the preset in-position range (parameter No. 16). If the in-position range (parameter No. 16) setting is large for low-speed operation, RX1 may remain "1" (ON) since the droop pulse value is small.

(6) Rough match (RX2)

This signal turns to "1" (ON) when the command remaining distance is less than the rough match output range (parameter No. 17). Refer to the timing chart in (5) of this section.

(7) Override (OVR)

The override (OVR) may be used to change the servo motor speed. The following table lists the signals and parameter related to the override:

Item	Name	Remarks
Analog input signal	Override (OVR)	
Contact input signal	Override selection (RY12)	May be used only when 2 stations are specified.
Demonstern	No.24 function selection 5	\Box \Box \Box 1: Override used
Parameter	No.47 override offset	-9999 to 9999mV

To use override, make it available by setting " $\Box \Box \Box \Box 1$ " in parameter No. 24.

(a) Override (OVR)

By applying a voltage (-10 to +10V) to the override (OVR) terminal, change values can be set from outside consecutively. The following graph shows the relationship between the input voltage and the ratio of actual speed to preset speed.

Refer to the following diagram when using the 15V power output (P15R/N15R) of the servo amplifier:

(b) Override selection (RY12)

Used to make the override (OVR) valid or invalid. This signal may be used only when 2 stations are specified.

Using the override selection (RY12), choose a change value as follows:

RY12	Speed change value	
0 (OFF)	No change	
1 (ON)	Override (OVR) setting is made valid.	

(c) Override offset (parameter No.47)

Using parameter No.47, the offset voltage can be set relative to the input voltage for the override (OVR). The setting is between -9999 to 9999mV.

(8) Torque limit

The following table lists the signals and parameters related to the torque limit:

Item	Name	Remarks	
Analog input signal	External torque limit (TLAP)		
Contact input signals	Torque limit selection (RYE)	Set " $\Box 0 \Box \Box$ " (initial value) in parameter No. 41.	
Contact output signal	Limiting torque (RX2)		
	No.40 internal torque limit	0 to 100%	
D (No.54 internal torque limit 2	0 to 100%	
Parameters	No.48 torque limit offset	-9999 to 9999mV	
	No.41 input signal selection	Selection of torque limit value to be used	

The torque limit is available in two types: internal torque limit set in parameters and external torque limit using analog input signal. This function limits generated torque on the assumption that the maximum torque of the servo motor is 100%.

(a) Internal torque limits (parameter No.40, 54)

Use parameter No.40 and 54 to set the internal torque limit values. The following graph shows the generated torque relative to the setting.

(b) External torque limit (TLAP)

By applying a voltage (0 to +10V) to the external torque limit (TLAP) terminal, limit values can be set from outside consecutively. The following graph shows the relationship between input voltage and limit value.

Depending on the servo amplifier, the limit value has about 5% variations to the input voltage. As this may not cause torque to be limited sufficiently at less than 0.05V, use this function at the voltage of 0.05V or more.

Refer to the following diagram when using the 15V power output (P15R) of the servo amplifier:

(c) Torque limit selection (RYE)

This input signal can be used to choose the torque limit value made valid.

1) When " $\Box \Box 0 \Box$ " is set in parameter No. 41

Switched between external torque limit (TLAP) and internal torque limit (parameter No. 40).

Using the torque limit selection (RYE), choose the limit value as follows. When RYE is turned on, the smaller value of the external torque limit and internal torque limit is chosen:

RYE	Torque limit value		
1 (ON)	External torque limit (TLAP) if External torque limit (TLAP) < internal torque limit		
I (ON)	Internal torque limit if External torque limit (TLAP) > internal torque limit		
0 (OFF) Internal torque limit is valid.			

2) When " $\Box \Box 1 \Box$ " is set in parameter No. 41

Switched between internal torque limit (parameter No. 40) and internal torque limit 2 (parameter No. 54).

Using the torque limit selection (RYE), choose the limit value as follows. When RYE is turned to "1" (ON), the smaller value of the internal torque limit and internal torque limit 2 is chosen:

RYE	Torque limit value			
0 (OFF)	Internal torque limit 2			
1 (ON)	Internal torque limit if internal torque limit < internal torque limit 2			
I (ON)	Internal torque limit 2 if internal torque limit > internal torque limit 2			

(9) Forward rotation stroke end (RY4) - Reverse rotation stroke end (RY5)

These signals are factory-set to be usable as the CN1 external input signals. During operation, keep RY4 and RY5 "1" (ON). Turning the stroke end signal (RY4 during CCW rotation or RY5 during CW rotation) to "0" (OFF) during servo motor rotation causes a sudden stop, then servo lock. At this time, the deviation counter is cleared.

(10) M code output (RX4, RX5)

(a) When 1 station is occupied (0 to 2)

These signals may be used only when 1 station is specified. The M code is output in 2-bit binary.

Maada	(Note) Input signal		
Wi code	RX4	RX5	
0	0	0	
1	0	1	
2	1	0	

Note.0: OFF 1: ON

(b) When 2 stations are occupied (00 to 99)

When 2 stations are occupied, the M code of 00 to 99 is set to the remote register (RWR4).

(11) Manual pulse generator pulse magnification selection (RY13, RY14)

These signals may be used only when 2 stations are occupied. Using RY13 and RY14, choose the pulse multiplying factor as indicated below.

Dules meanification	(Note) Input signal		
Pulse magnification	RY14	RY13	
1 time	0	0	
10 times	0	1	
100 times	1	0	

Note:0: OFF 1: ON

(12) Alarm code output (RX6, RX7, RX8, RX9)

The alarm type is output in 4-bit code. For details, refer to Section 11.4.1.

- 4.4 When switching power on for the first time
- 4.4.1 Pre-operation checks

Before starting operation, check the following:

- (1) Wiring
 - (a) A correct power supply is connected to the power input terminals (R, S, T) of the servo amplifier.
 - (b) The servo motor power supply terminals (U, V, W) of the servo amplifier match in phase with the power input terminals (U, V, W) of the servo motor.
 - (c) The servo motor power supply terminals (U, V, W) of the servo amplifier are not shorted to the power input terminals (R, S, T).
 - (d) The servo amplifier and servo motor are grounded securely.
 - (e) When using the regenerative brake option, twisted cables are used and the lead of the built-in regenerative brake resistor has been removed.
 - (f) The forward rotation stroke end (RY4) and reverse rotation stroke end (RY5) are "0" (OFF).
 - (g) 24VDC or higher voltages are not applied to the pins of connectors CN1.
 - (h) SD and SG of connectors CN1 are not shorted.
 - (i) The wiring cables are free from excessive force.
- (2) Environment

Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.

- (3) Machine
 - (a) The screws in the servo motor installation part and shaft-to-machine connection are tight.
 - (b) The servo motor and the machine connected with the servo motor can be operated.

4.4.2 Startup

 Do not operate the switches with wet hands. You may get an electric shock. Do not operate the servo amplifier with the front cover removed. High-voltage terminals and charging area are exposed and you may get an electric shock. During power-on or operation, do not open the front cover. You may get an electric shock. 		
 Before starting operation, check the parameters. Some machines may perform unexpected operation. During power-on or for some time after power-off, do not touch or close a parts (cable etc.) to the servo amplifier heat sink, regenerative brake resistor, servo motor, etc. Their temperatures may be high and you may get burnt or parts may damaged. 		

Connect the servo motor with a machine after confirming that the servo motor operates properly alone. For startup reference, a single machine structure will be described. Refer to this section and start up the machine safely.

(1) Machine conditions

- 1) Absolute position detection system used
- 2) Command resolution: 10µm
- 3) Command system: Absolute value command system
- 4) Electronic gear calculation


```
CDV=5000
```

5) Position block No.0 is used to execute automatic operation once.

(2) Startup procedure

- (a) Power on
 - 1) Turn the servo on signal (RY0) to "0" (OFF).
 - 2) When main circuit power/control circuit power is switched on, "Position" appears on the parameter unit display.
- (b) Test operation 1

Using JOG operation in the "test operation mode" of the parameter unit, make sure that the servo motor operates. (Refer to Section 8.2.)

(c) Parameter setting

Set the parameters according to the structure and specifications of the machine. Refer to Chapter 7 for the parameter definitions and to Sections 8.2 for the setting method.

Parameter	Name	Setting	Description	
No.2 Feed system		□3□2		
No.3 Function selection 1		1□□0 ↓ Linear acceleration/deceleration system. Used in absolute position detection system.		
No.4	Function selection 2	D 0 1 M P D St	s command resolution is 10μm, feed length nultiplying factor of 10 times is chosen. osition data unit [mm] is selected. igital display, automatic decimal point etting selection.	
No.5	Electronic gear numerator (CMX)	8192	From calculation result of formula (4.1)	
No.6	Electronic gear denominator (CDV)	5000	From calculation result of formula (4.1)	

After setting the above parameters, switch power off once. Then switch power on again to make the set parameter values valid.

(d) Position block setting

Set the position block according to the operation pattern. Refer to Section 4.6.1 for the position block details and to Section 4.10 for the setting method. Setting of position block No.0

Position data [×10 ^{s™} µm]	M code	Speed block No.
2000.00	00	1

Setting of speed block No.1

Servo motor speed	Acceleration time constant	Deceleration time constant	
[r/min]	[ms]	[ms]	
2500	200	300	

(e) Servo on

Switch the servo on in the following procedure:

1) Switch on main circuit/control power.

2) Turn the servo on signal (RY0) to "1" (ON).

When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is locked.

(f) Zeroing

Before starting positioning operation, always make home position return. Refer to Section 4.7 for zeroing types. A parameter setting example for dog type zeroing is given here.

Parameter	Name	Setting	Description
No.9	Zeroing type	D000 Ze dir SG	g type zeroing is selected. roing is started in address incremented ection. oximity dog signal is valid when DOG- e are opened.
No.11	Zeroing speed	1000	Motion is made up to proximity dog at 1000r/min.
No.12	Creep speed	10	Motion is made up to home position at 10r/min.
No.13	Zero shift distance	0	No zero shift
No.10	Zeroing position data		Zero address is entered automatically after zeroing.
No.14	Moving distance after proximity dog	/	Not used in dog type zeroing.

After setting the above parameters, switch power off once. Then switch power on again to make the set parameter values valid.

Set the input signal as indicated in the following table and turn the forward rotation start (RYA) to "1" (ON) to execute zeroing.

Device name	Device No.	ON/OFF	Description
Automatic/manual selection	RY7	0 (OFF)	
Zeroing	RY9	1 (ON)	Zeroing mode is selected.
Temporary stop	RY8	0 (OFF)	
Servo-on	RY0	1 (ON)	Servo-on status is reached.

(g) Automatic operation

Set the input signals as listed below and switch on the forward rotation start (RYA) to execute automatic operation of position block No.1 $\,$

Device name	Device No.	ON/OFF	Description
Automatic/manual selection	RY7	1 (ON)	Automatic operation mode is selected.
Servo-on	RY0	1 (ON)	Servo-on status is reached.
Forward rotation stroke end	RY4	1 (ON)	Forward rotation side limit switch is turned on.
Reverse rotation stroke end	RY5	1 (ON)	Reverse rotation side limit switch is turned on.
Position block number selection bit0	RY1	0 (OFF)	
Position block number selection bit1	RY2	0 (OFF)	Position block No.0 is selected.
Position block number selection bit2	RY3	0 (OFF)	

(h) Stop

In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo motor:

1) Turn the servo on signal (RY0) to "0" (OFF).

The base circuit is shut off and the servo motor coasts.

2) Alarm occurrence

When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop.

3) Forced stop (EMG) OFF

The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop. Alarm AL.E6 occurs.

4) Turn the forward/reverse rotation stroke end signal (RY4/RY5) to "0" (OFF).

The servo motor is brought to a sudden stop and servo-locked.

POINT

• A sudden stop indicates that a stop is made with the droop pulses erased.

4. POSITIONING SYSTEM

4.5 Manual operation mode

For manual operation, set the operation mode selection signals (RY7, RY9) as listed below:

Operation mode selection signal	ON/OFF
RY7	0 (OFF)
RY9	0 (OFF)

4.5.1 JOG operation

Set the JOG speed.

Parameter No.	Setting	
8	0 to max. speed (r/min)	

Turning the forward rotation start (RYA) or reverse rotation start (RYB) to "1" (ON) rotates the servo motor while it is "1" (ON). At this time, the rotation direction is as indicated below. The acceleration/deceleration time constants used are those of speed block No. 1.

Start	Parameter No. 2			
signal				
RYA	CCW (address increase) CW (address increase)		CCW (address decrease)	CW (address decrease)
RYB	CW (address decrease) CCW (address decrease)		CW (address increase)	CCW (address increase)

The timing chart is as follows:

4.5.2 Manual pulse generator operation

(1) When 1 station is occupied

Set any of 1 to 3 in parameter No. 30 as indicated below to make operation from the manual pulse generator valid. Select the pulse multiplying factor of the manual pulse generator at this time.

Parame	eter No.30 * Machine feedrate per revolutio - 0 manual pulse generator in met system	n of ric
Setting	Manual pulse generator	* Moving distance/number of revolution
0	Not used	
1	Used/pulse 1-time multiplication selected	100 µ m
2	Used/pulse 10-time multiplication selected	1mm (0.039in.)
3	Used/pulse 100-time multiplication selected	10mm (0.394in.)

Turn the manual pulse generator (MR-H-DP01) to rotate the servo motor. The turning direction of the manual pulse generator corresponds to the rotation direction of the servo motor as listed below:

ns

Turning direction of	Parameter No. 2				
manual pulse generator					
Forward notation	CCW	CW	CCW	CW	
Forward rotation	(address increase)	(address increase)	(address decrease)	(address decrease)	
Bouence retation	CW	CCW	CW	CCW	
Reverse rotation	(address decrease)	(address decrease)	(address increase)	(address increase)	

Manual pulse generator

(2) When 2 stations are occupied

The pulse multiplying factor of the manual pulse generator can be changed by using pulse multiplying factor selection in parameter No. 30 and the pulse multiplying factor selection signals (RY13, RY14). Set any of 1 to 4 in parameter No. 30 as listed below to make operation from the manual pulse generator valid.

Parameter No. 30

* Machine feedrate per revolution of manual pulse generator in metric

!L 	system	
Setting	Manual pulse generator	* Feed distance/number of revolutions
0	Not used	
1	Used/pulse 1-time multiplication selected	100µm
2	Used/pulse 10-time multiplication selected	1mm (0.039in.)
3	Used/pulse 100-time multiplication selected	10mm (0.394in.)
4	Used/pulse multiplication selected externally	
	Pulse multiplying factor is selected using	
	RY13, RY14.	

Setting " $\Box \Box \Box 4$ " in parameter No. 30 enables the pulse multiplying factor to be set with the pulse multiplying factor selection signals (RY13, RY14). Relationships between the multiplying factors and pulse multiplying factor selection signals are listed below:

Pulse multiplying factor selection signals		
RY14	RY13	
0 (OFF)	0 (OFF)	
0 (OFF)	1 (ON)	
1 (ON)	0 (OFF)	
-	RY14 0 (OFF) 0 (OFF) 1 (ON)	

Turn the manual pulse generator to rotate the servo motor. The turning direction is as indicated in (1) of this section.

4.6 Automatic operation mode

Set the operation mode select signals (RY7, RY9) as listed below.

Operation mode select signal	ON/OFF
RY7	1 (ON)
RY9	0 (OFF)

4.6.1 Positioning operation according to point tables

(1) Outline of point table data

The point tables consist of the position blocks used to set the position data, M codes and speed block numbers and the speed blocks used to set the motor speeds, acceleration time constants and deceleration time constants.

When 1 station is specified, 8 position blocks and 8 speed blocks are usable. These data can be set to both non-volatile memory (EEP-ROM) and volatile memory (RAM).

When 2 stations are occupied, 256 position blocks and 8 speed blocks are usable. However, since the position blocks No. 8 to 255 do not have non-volatile memory, the position block data must be set before starting operation. As when 1 station is specified, the speed blocks can be set to both non-volatile memory and volatile memory.

When writing the position/speed block data, select which memory to use to write the data using the instruction code.

Whether 1 station or 2 stations are specified, the data written to non-volatile memory are saved in the servo amplifier if power is switched off. Note that the write life of non-volatile memory is about 100,000 times. Hence, when rewriting the point table data frequently, write the data to volatile memory for operation.

(2) Setting of position block data

By setting parameter No.2, either absolute command positioning or incremental command positioning can be selected.

Parameter N	lo.2	
	Set Value	Positioning Method
	1	Incremental command positioning
	2	Absolute command positioning

The number of position blocks that may be set is 8 blocks (position block numbers 0 to 7) when 1 station is occupied, or 256 blocks (position block numbers 0 to 255) when 2 stations are occupied.

(a) For absolute command positioning

Set " $\Box \Box \Box \Box 2$ " in parameter No.2.

Using the parameter unit, set the position data (absolute value), M code and speed block number in the position block. (Refer to the next table.) For the position block setting method, refer to Section 4.10.

Position block No.	Position data (Absolute position)	M code	Speed block No.
0	20000	1	1
1	-100	2	1
2	500	0	2
:	:	:	:
7(255)	12000	0	8

Item	Description
Position data	Target position to be reached
	Code output on completion of positioning operation.
M code	When 1 station is occupied : 0 to 2
	When 2 stations are occupied: 00 to 99
C III IN	Speed block number 1 to 8
Speed block No.	When speed block number 0 is set, the corresponding position block number is invalid.

The unit ([mm], [inch]) and input range of the position data (absolute value) can be changed by setting parameter No. 4.

If positioning is performed with the setting made in excess of that input range, absolute position counter warning (AL.E3) occurs. If power is switch off, then on in that status, the position cannot be restored properly.

Parameter No.4				
	Set value (STM)	Input range(mm or inch)		
	0	- 999.999 to+ 999.999		
	1	- 9999.99 to+ 9999.99		
	2	- 99999.9 to+ 99999.9		
	3	- 999999 to+999999		
	Set value	Unit		
	0	mm		
	1	inch		

The setting range is as given in Expression 4.2

Number of encoder pulses \times 327	$67 \times \frac{\text{CDV}}{\text{CMX}} / 10^{\text{STM}} \qquad \dots \tag{4.2}$
Number of encoder pulses	: 8192P/rev or 16384P/rev
CDV	: Parameter No.6 (electronic gear)
CMX	: Parameter No.5 (electronic gear)
STM	: Lowest digit of parameter No.4 (travel magnification)

If the result of Expression 4.2 dose no fall within the range of STM, the input range is as set in STM (parameter No.4).

(b) For incremental command positioning

Set " $\Box \Box \Box \Box$ 1" in parameter No.2.

Using the parameter unit, set the position address (increment), M code and speed block number in the position block of the position data.

Position block No.	Position data (increment)	M code	Speed block No.
0	20000	1	1
1	15000	2	1
2	500	0	2
:	:	:	:
7(255)	12000	0	8

Item	Description
Position data	Incremental value up to motion destination
	Code output on completion of positioning operation.
M code	When 1 station is occupied : 0 to 3
	When 2 stations are occupied: 00 to 99
Speed block No.	Speed block number 1 to 8
	When speed block number 0 is set, the corresponding position block number is invalid.

The unit ([mm], [inch]) and input range of the position data (increment) can be changed by setting parameter No.4

(3) Setting of speed block data

By setting parameter No.3, either the linear or S-shaped acceleration/deceleration pattern can be selected. The number of speed blocks that may be set is 8 (speed block numbers 1 to 8).

Parameter No.3			
-	-	-	

Set value	Acceleration/Deceleration pattern
0	Linear acceleration/deceleration
1	S-shaped acceleration/deceleration

For linear acceleration/deceleration pattern, set " $\Box \Box \Box \Box 0$ " in parameter No.3.

Using the parameter unit, set the servo motor speed, acceleration time constant and deceleration time constant in the speed block.

Speed block No.	Speed (r/min)	Acceleration time constant (ms)	Deceleration time constant (ms)
1	2000	220	20
2	500	100	50
3	1200	50	55
:	:	:	
8	1500	20	30

For the speed block setting method, refer to Section 4.10.

Item	Description
Speed	0 to max. speed r/min
Acceleration/deceleration time constant	0 to 20000ms The acceleration and deceleration time constants set should be the lengths of time (ms) required for the servo motor to rise to and fall from the rated speed, respectively.

For S-shaped acceleration/deceleration pattern, smooths the rise and fall of servo motor rotation. Set " $\Box \Box \Box 1$ " in parameter No.3.

Using the parameter unit, set the servo motor speed, acceleration/deceleration time constant and S-shape time constant in the speed block. The acceleration time constant is equal to the deceleration time constant.

Speed block No.	Speed (r/min)	Acceleration deceleration time constant (ms)	S-shape time constant (ms)
1	2000	1000	100
2	500	1500	200
3	1200	1200	100
:	:	:	
8	1500	2000	200

Item	Description	
Speed	0 to max. speed r/min	
Acceleration/deceleration time constant	0 to 20000ms	
S-shape time constant	100 to 450ms Set the S-shape time constant to 10-20% of the acceleration/deceleration time constant.	

(4) Selection of position block

When you have set the corresponding tables, choose the position block numbers used for positioning. When 1 station is specified, make selection in 3-bit binary of RY1, RY2 and RY3.

Standard (8 positions)

Desition block No.	(Note) Input signal			
Position diock No.	RY3	RY2	RY1	
0	0	0	0	
1	0	0	1	
2	0	1	0	
:	:	:	:	
7	1	1	1	

Note.0: OFF

1: ON

When 2 stations are occupied, use the position block No. (RWw4) of the remote register. (Refer to Section 3.6.3)

(5) Start

For absolute command positioning, Turn the forward rotation start (RYA) to "1" (ON) to rotate the servo motor to the preset position. The rotation direction of the servo motor depends on the setting of parameter No.2. At this time, the reverse rotation start (RYB) is invalid.

Parameter No.2

	-	
	Set value	Servo motor rotation direction
	0	+ position data for CCW rotation —position data for CW rotation
		a self and data fair OW as tables

+ position data for CW rotation
 _ position data for CCW rotation

For incremental command positioning, Turn the forward rotation start (RYA) or reverse rotation start (RYB) to "1" (ON) to rotate the servo motor to the preset position. The rotation direction of the servo motor depends on the setting of parameter No.2. The relationship between the set value and servo motor rotation is as listed below.

Parameter No.2

Set	Servo motor ro	tation direction	
value	RYA:ON	RYB:ON	
	CCW rotation	CW rotation	
0	(Current value	(Current value	
	increase)	decrease)	
	CW rotation	CCW rotation	
1	(Current value	(Current value	
	increase)	decrease)	
	CCW rotation	CW rotation	
2	(Current value	(Current value	
	decrease)	increase)	
	CW rotation	CW rotation	
3	(Current value	(Current value	
	decrease)	increase)	

(6) Timing chart

Shows operation performed after power on and zeroing completion. Refer to Section 3.6.3 (1) for the position block No. setting timing chart when 2 stations are specified.

4. POSITIONING SYSTEM

To erase the command remaining distance after a temporary stop, turn RY7 to "0" (OFF) for longer than 5ms on the leading edge of RX1 after the temporary stop. Changing the automatic mode to the manual mode erases the remaining distance. To start positioning operation anew, turn the start signal (RYA/RYB) to "1" (ON) after RX2 has turned to "1" (ON).

Operation performed after power on and zeroing completion is shown below:

Note. Turning RY7 to "0" (OFF) outputs "0".

4.6.2 Positioning operation according to position command data

This operation is available only when 2 stations are occupied. Set the position command data (position data) to the CC-Link remote register to perform operation.

Set " $\Box \Box \Box \Box 1$ " or " $\Box \Box \Box 2$ " in parameter No. 65. Set " $\Box \Box \Box 1$ " to specify the speed block No., or " $\Box \Box \Box 2$ " to set the motor speed.

Cor	nmand system select	ion
Set value	Position command	Speed command
0	Specify the position block No.	Use the speed block No. of the position block to specify.
1	Use the remote register to set the	Use the remote register to set the speed block No.
2	position data.	Use the remote register to set the motor speed.

By setting parameter No.2, either absolute command positioning or incremental command positioning can be selected.

Parameter No.2

- - - <u>-</u>

Set value	Positioning method
1	Incremental command positioning
2	Absolute command positioning

(1) For absolute value command positioning

Set " $\Box \Box \Box \Box 2$ " in parameter No. 2.

(a) Setting of position command data

Set the position data (absolute value) to the position command data lower 16 bits (RWw4) and position command data upper 16 bits (RWw5). The position data can be changed in unit ([mm], [inch]) and input range by the setting of parameter No. 4. The input range is the same as in Section 4.6.1 (2)(a).

Parameter No.4

-

-		
	Set value (STM)	Input range(mm or inch)
	0	- 999.999 to+999.999
	1	- 9999.99 to+9999.99
	2	- 99999.9 to+99999.9
	3	- 999999 to +999999
L	Set value	Unit
	0	mm
	1	inch

(b) Setting of speed command data

When specifying the speed block No., set the speed block No. to the speed command data (RWw6). When setting the speed, set the speed to the speed command data (RWw6). At this time, use the values set in speed block No. 1 as the acceleration and deceleration time constants.

(c) Start

Turning on the forward rotation start (RYA) rotates the servo motor to the preset position. The servo motor rotation direction is the same as in Section 4.6.1 (5).

(d) Timing chart

Operation performed after power on and zeroing completion is shown below. Refer to Section 3.6.3 (1) for the position command data and speed command data timing chart when 2 stations are occupied.

Servo ON (RY0)	1(ON) 0(OFF)						
Ready (RX0)	1(ON) 0(OFF)						
Trouble (RX3A)	0(ON) 1(OFF)						
Automatic/Manual operation mode selection (RY7)	1(ON) 0(OFF)						
Zeroing mode selection (RY9)	1(ON) 0(OFF)						
In position (RX1)	1(ON) 0(OFF)		<u> </u>				.
Rough match (RX2)	1(ON) 0(OFF)		1 1 1 1 1				
Zeroing completion (RX3)	1(ON) 0(OFF)	 	1 1 1 1 1 1	+ : : : : : : : : : : : : : : : : : : :	<u> </u> 		▶ ¦
Position command data (RWw4,RWw5)			Absolute value 1			Absolute value 2	
Speed command data (RWw6)		Speed con	5ms or more			Speed command data 2	×
Servo motor speed							
	5ms or more		— 3ms or less —◀— 5ms or –	s more			
Forward rotation start (RYA)	0(OFF)						

(2) For incremental value command positioning

Set " $\Box \Box \Box \Box$ 1" in parameter No. 2.

(a) Setting of position command data

Set the position data (incremental value) to the position command data lower 16 bits (RWw4) and position command data upper 16 bits (RWw5). The position data can be changed in unit ([mm], [inch]) and input range by the setting of parameter No. 4. The input range is the same as in Section 4.6.1 (2)(b).

Parameter No.4 _ Set value Input range(mm or inch) (STM) 0 to +999.999 0 0 to +9999.99 1 2 0 to+99999.9 0 to +999999 3 Set value Unit mm 0 inch 1

(b) Setting of speed command data

When specifying the speed block No., set the speed block No. to the speed command data (RWw6). When setting the speed, set the speed to the speed command data (RWw6). At this time, use the values set in speed block No. 1 as the acceleration and deceleration time constants.

(c) Start

Turning the forward rotation start (RYA) or reverse rotation start (RYB) to "1" (ON) rotates the servo motor to the preset position. The servo motor rotation direction is the same as in Section 3.6.1 (5).

(d) Timing chart

Operation performed after power on and zeroing completion is shown below. Refer to Section 3.6.3 (1) for the speed command data timing chart when 2 stations are occupied.

4. POSITIONING SYSTEM

4.7 Manual zeroing mode

• When using the HA-MH, HA-FH, HA-SH, HA-LH or HA-UH series servo motor, always rotate the servo motor one or more revolutions before starting zeroing after power-on. You need not do this when using the HC-MF, HA-FF, HC-SF, HC-RF or HC-UF series servo motor.

4.7.1 Outline of zeroing

Zeroing is performed to match the command coordinates with the machine coordinates.

In the incremental system, zeroing is required every time input power is switched on. In the absolute position detection system, once zeroing is done at the time of installation, the current position is retained if power is switched off. Hence, zeroing is not required when power is switched on again.

The MR-H-TN has the zeroing methods given in this section. Choose the most appropriate method for your machine structure and application.

The MR-H-TN has the automatic zeroing return function which executes zeroing by making an automatic return to a proper position if the machine has stopped beyond or at the proximity dog. Manual motion by JOG operation or the like is not required.

(1) Manual zeroing types

Four manual zeroing types are available. Choose the optimum zeroing according to the machine type, etc.

Туре	Zeroing method	Features
Dog type zeroing	With deceleration started at the front end of a proximity dog, the position where the first Z-phase signal is given past the rear end of the dog or a motion has been made over the zero shift distance starting from the Z-phase signal is defined as a home position. (Note)	General zeroing method using a proximity dog. Repeatability of zeroing is excellent and the machine is less burdened. Used when the width of the proximity dog can be set greater than the deceleration distance of the servo motor.
Count type zeroing	With deceleration started at the front end of a proximity dog, the position where the first Z-phase signal is given after advancement over the preset moving distance after the proximity dog or a motion has been made over the zero shift distance starting from the Z-phase signal is defined as a home position.	Zeroing method using a proximity dog. Used when it is desired to minimize the length of the proximity dog.
Data setting type zeroing	The position reached after any automatic motion is defined as a home position.	No proximity dog required.
Stopper type zeroing	The position where the machine stops when its part is pressed against a machine stopper by JOG, manual pulse generator or similar operation is defined as a home position.	Since the machine part collides with the machine stopper, zeroing speed must be set to a fully low value and the machine and stopper strength must be fully considered.

Note: The Z-phase signal is a pulse generated once per servo motor revolution.

(2) Zeroing parameter

When performing zeroing, set parameter No.9 as follows:

- (a) Choose the zeroing method.
- (b) Choose the starting direction of zeroing. Set "0" to start zeroing in the direction in which the address is incremented from the current position, or "1" to start zeroing in the direction in which the address is decremented.
- (c) Choose the polarity at which the proximity dog is detected. Set "0" to detect the dog when the proximity dog signal (RY6) turns off (0) or "1" to detect the dog when the signal turns on (1).
- (3) Instructions
 - (a) Before starting zeroing, always make sure that the limit switch operates.
 - (b) Confirm the zeroing direction. Incorrect setting will cause the machine to run reversely.
 - (c) Confirm the proximity dog input polarity. Otherwise, misoperation can occur.

4.7.2 Dog type zeroing

A zeroing method using a proximity dog.

With deceleration started at the front end of the proximity dog, the position where the first Z-phase signal is given past the rear end of the dog or a motion has been made over the zero shift distance starting from the Z-phase signal is defined as a home position.

(1) Signals, parameters

Set the input signals and parameters as follows:

Item	Device/Parameter used	Description
Manual maning mode colorism	Automatic/manual selection signal (RY7)	Turn RY7 to "0" (OFF).
Manual zeroing mode selection	Zeroing (RY9)	Turn RY9 to "1" (ON).
Dog type zeroing	Parameter No.9	\Box
Zeroing direction	Parameter No.9	Refer to section 4.7.1(2) and choose zeroing direction.
Dog input polarity	Parameter No.9	Refer to section 4.7.1(2) and choose dog input polarity.
Zeroing speed	Parameter No.11	Set speed until detection of dog.
Creep speed	Parameter No.12	Set speed after detection of dog.
Zero shift distance	Parameter No.13	Set when shifting the home position starting at the first Z-phase signal after passage of proximity dog rear end.
Zeroing acceleration/deceleration time constants	Speed block No.1	Use the acceleration/deceleration time constants of speed block No.1.
Zeroing position data	Parameter No.10	Address reached by zeroing is stored automatically.

(2) Length of proximity dog

To ensure that the Z-phase signal of the servo motor is generated during detection of the dog signal, the proximity dog should have the length which satisfies formulas (4.2) and (4.3):

$L1 \ge \frac{V}{60}$ •	<u>td</u> 2		(4.2)
-------------------------	----------------	--	-------

- L1 : Proximity dog length [mm]
- V : Zeroing speed [mm/min]
- td : Deceleration time [s]

- L2 : Proximity dog length [mm]
- $\Delta S~$: Moving distance per servo motor revolution [mm]

(3) Timing chart

The address on completion of zeroing is the value automatically set in parameter No.10 (zeroing position data).

(4) Adjustment

In dog type zeroing, adjust to ensure that the Z-phase signal is generated during dog detection. Locate the rear end of the proximity dog at approximately the center of two consecutive Z-phase signals. The position where the Z-phase signal is generated can be monitored in "Within one-revolution position" of "Status display".

4.7.3 Count type zeroing

In count type zeroing, a motion is made over the distance set in parameter No.14 (moving distance after proximity dog) after detection of the proximity dog front end. The position where the first Z-phase signal is given after that is defined as a home position. Hence, if the dog signal (RY6) is 10ms or longer, there is no restriction on the dog length. This zeroing method is used when the required proximity dog length cannot be reserved to use dog type zeroing or when the dog signal is entered electrically from a servo amplifier or the like.

(1) Signals, parameters

Set the input signals and parameters as follows:

Item	Device/Parameter used	Description
	Automatic/manual selection signal (RY7)	Turn RY7 to "0" (OFF).
Manual zeroing mode selection	Zeroing (RY9)	Turn RY9 to "1" (ON).
Count type zeroing	Parameter No.9	\Box \Box \Box 1: Count type zeroing is selected.
Zeroing direction	Parameter No.9	Refer to section 4.7.1 (2) and choose zeroing direction.
Dog input polarity	Parameter No.9	Refer to section 4.7.1 (2) and choose dog input polarity.
Zeroing speed	Parameter No.11	Set speed until detection of dog.
Creep speed	Parameter No.12	Set speed after detection of dog.
Zero shift distance	Parameter No.13	Set when shifting the home position, starting at the first Z-phase signal given after passage of the proximity dog front end and movement over the moving distance.
Moving distance after proximity dog	Parameter No.14	Set the moving distance after passage of proximity dog front end.
Zeroing acceleration/deceleration time constants	Speed block No.1	Use the acceleration/deceleration time constants of speed block No.1.
Zeroing position data	Parameter No.10	Address reached by zeroing is stored automatically.

(2) Timing chart

The address on completion of zeroing is the value automatically set in parameter No.10 (zeroing position data).

4.7.4 Data setting type zeroing

In data setting type zeroing, a motion is made to any position by JOG operation, manual pulse generator operation or the like to make a home position return, and the position reached is defined as a home position.

(1) Signals, parameters

Set the input signals and parameters as follows:

Item	Device/Parameter used	Description
Manual zeroing mode	Automatic/manual selection signal (RY7)	Turn RY7 to "0" (OFF).
selection	Zeroing (RY9)	Turn RY9 to "1" (ON).
Data setting type zeroing	Parameter No.9	$\Box \Box \Box 2$: Data setting type zeroing is selected.
Zeroing position data	Parameter No.10	Address reached by zeroing is stored automatically.

(2) Timing chart

The address on completion of zeroing is the value automatically set in parameter No.10 (zeroing position data).

4.7.5 Stopper type zeroing

In stopper type zeroing, a machine part is pressed against a stopper or the like by JOG operation, manual pulse generator operation or the like to make a home position return and that position is defined as a home position.

(1) Signals, parameters

Set the input signals and parameters as follows:

Item	Device/Parameter used	Description
Manual zeroing mode	Automatic/manual selection signal (RY7)	Turn RY7 to "0" (OFF).
selection	Zeroing (RY9)	Turn RY9 to "1" (ON).
Stopper type zeroing	Parameter No.9	□□□3: Stopper type zeroing is selected.
Zeroing acceleration time	Sweed black No. 1	Acceleration time constant of speed block No. 1
constant	Speed block No. 1	is used.
Zaming position data	Parameter No.10	Address reached by zeroing is stored
Zeroing position data		automatically.

(2) Timing chart

The address on completion of zeroing is the value automatically set in parameter No.10 (zeroing position data).

4.7.6 Automatic zeroing return function

If the current position is at or beyond the proximity dog in dog or count type zeroing, you need not make a start after making a return by JOG operation or the like.

When the current position is at the proximity dog, an automatic return is made before zeroing.

At a start, a motion is made in the zeroing direction and an automatic return is made on detection of the limit switch. The motion stops past the front end of the proximity dog, and zeroing is resumed at that position. If the proximity dog cannot be detected, the motion stops on detection of the opposite limit switch and AL.90 occurs.

4.8 Automatic zeroing

To define a home position (parameter No.10) by manual zeroing after power-on and then return to the home position, use of automatic zeroing enables an automatic return to the home position at high speed. In an absolute position system, manual zeroing is not required after power-on. Also, a second home position can be set in parameter No.15.

After power-on, execute manual zeroing in advance.

Set the operation mode selection signals (RY7, RY9) as indicated below:

Operation mode select signal	ON/OFF
RY7	1 (ON)
RY9	1 (ON)

Use parameter No.11 to set the zeroing speed for automatic zeroing. Use the data of speed block No.1 in the point table to set the acceleration and deceleration time constants. Turning the forward rotation start (RYA) to "1" (ON) starts a high-speed automatic return to the home position.

Parameter No.	Description	Setting range
11	Zeroing speed	0 to max. speed (r/min)

A second home position can be set and an automatic return to that position performed. Set the position address of the second home position in parameter No. 15. Turning the reverse rotation start (RYB) to "1" (ON) starts a high-speed automatic return to the second home position.

4.9 Absolute position detection system

An absolute position detection system can be configured up by merely loading an absolute position data back-up battery and setting parameter values.

You only have to make home position setting once and need not perform zeroing at every power-on.

(1) Restrictions

An absolute position detection system cannot be built under the following conditions:

1) Stroke-less coordinate system, e.g. rotary shaft, infinite positioning.

- 2) Operation performed in incremental value command type positioning system.
- (2) Specifications

Item	Description
System	Electronic battery backup system
Pottowy	1 piece of lithium battery (primary battery, nominal +3.6V)
Battery	Type: MR-BAT or A6BAT
Maximum revolution range	Home position ± 32767 rev.
(Note 1) Maximum speed at power failure	500r/min
(Note 2) Battery backup time	Approx. 10,000 hours (battery life with power off)
(Note 3) Data holding time during battery replacement	2 hours at delivery, 1 hour in 5 years after delivery
Battery storage period	5 years from date of manufacture

Note:1.Maximum speed available when the shaft is rotated by external force at the time of power failure or the like. 2.Time to hold data by a battery with power off.

3.Period during which data can be held by the super capacitor in the encoder after power-off, with the battery voltage low or the battery removed, or during which data can be held with the encoder cable disconnected. Battery replacement should be finished within this period.

(3) Structure

(Component	Description	
Servo amplifi	er	Use standard models.	
	HA-LH	Use a servo motor equipped with absolute position encoder (-Y).	
Servo motor	HC-KF	Use standard models.	
	HC-MF • HA-FF		
	HC-SF • HC-RF		
	HC-UF		
Battery		MR-BAT or A6BAT	
Encoder cable		Use a standard model.	
		When fabricating, refer to, Section 14.1.6	

(4) Outline of absolute position detection data communication

For normal operation, as shown below, the encoder consists of a detector designed to detect a position within one revolution and a cumulative revolution counter designed to detect the number of revolutions.

The absolute position detection system always detects the absolute position of the machine and keeps it battery-backed, independently of whether the general-purpose programming controller power is on or off. Therefore, once the home position is defined at the time of machine installation, zeroing is not needed when power is switched on thereafter.

If a power failure or a fault occurs, restoration is easy.

Also, the absolute position data, which is battery-backed by the super capacitor in the encoder, can be retained within the specified period (cumulative revolution counter value retaining time) if the cable is unplugged or broken.

(5) Battery installation procedure

Before starting battery installation on procedure, make sure that the charge lamp is off more than 10 minutes after power-off. Then confirm that voltage safe in the tester or the like. Otherwise, you may get an electric shock.

POINT	
The internal	circuits of the servo amplifier may be damaged by static
electricity.	
Always take	the following precautions:
 Ground hu 	ıman body and work bench.
• Do not tou	ch the conductive areas, such as connector pins and electrical
parts, dire	ctly by hand.

- (a) Open the terminal block cover and switch window. (When the model used is the MR-H500TN or more, also remove the front panel.)
- (b) Install the battery in the battery holder.
- (c) Install the battery connector into CN5 unit it clicks.
1) MR-H10TN to MR-H350TN

Open the switch window, fit the battery, and insert the plug into CN5.

2) MR-H500TN, MR-H700TN

and insert the plug into CN5.

Open the switch window, fit the battery, and insert the plug into CN5.

(6) Parameter setting

Set parameter No. 3 as indicated below to make the absolute position detection system valid.

Parameter No.3						
1						

- Selection of absolute position detection system

- 0: Incremental system
- 1: Absolute position detection system

4.10 Point table data setting procedures of the parameter unit

(1) Position block data

(a) Position block data input

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (call the data setting mode screen). Press $[\blacktriangle]/[\nabla]$ to select the block to be set (select the position block). Press $[_]$ to define the block to be set (select the position block).	<set mode=""> → Pos. Block Speed Block Edit :HELP ▼</set>
2)	Press [^E 8] and [^B 5] on the ten-key pad to specify the position block number to be set (for 85). Press [$_{4}$] to define the position block number to be set.	<pos.set> Block No. Read:←</pos.set>
3)	Press $[\blacktriangle]/[\nabla]$ to specify the position block number to be set (for 85). Press $[\4]$ to define the position block number to be set.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
4)	On the data list screen, press $[\blacktriangle]/[\nabla]$ to select the data field into which data is to be input (select the position). Press $[\4]$ to define the data field into which data is to be input (define the position).	85 Pos.Bloc ▲ →Pos 12345.6 M Code 68 Speed No 5 ▼
5)	On the input screen, press $[{}^{D}7]$, $[{}^{E}8]$, $[{}^{1STEP} \cdot]$ and $[{}^{F}9]$ on the ten-key pad to enter position data (for 78.9). Press $[_{4} \sqcup]$ to write the position data and press [CAN] to proceed to step 6).	85 Position ▲ 12345.6 78.9 Write: ◄ mm ▼
6)	On the data list screen, press $[\blacktriangle]/[\blacktriangledown]$ to select the data field into which data is to be input (select the M code). Press $[_]$ to define the data field into which data is to be input (define the M code).	85 Pos.Bloc Pos 78.9 → M code 68 Speed No 5 ▼
7)	On the input screen, press $[^{B}5]$ and $[0]$ on the ten-key pad to enter the M code (for 50). Press $[_{4}]$ to write the M code and press [CAN] to proceed to step 8).	85 M code 68 50 Write:∢⊣ ▼
8)	On the data list screen, press $[\blacktriangle]/[\blacktriangledown]$ to select the data field into which data is to be input (select the speed number). Press $[_]$ to define the data field into which data is to be input (define the speed number).	85 Pos. Bloc ▲ Pos 78.9 M code 50 →Speed No 5 ▼
9)	On the input screen, press [2] on the ten-key pad to enter the speed number (for 2). Press [4] to write the speed number. Position block input complete Press [CAN] twice to return to step 3).	85 Speed No 5 2 Write:↓ ▼
10)	If the key pressed is wrong, press [STOP/RESET] to return to the input screen, or press [CAN] to return to the data list screen.	85 Speed No 5 9 Error:RST ▼

(b) Speed block reference

The speed block settings can be referred to during position block input, but cannot be input.

Step	Parameter unit operation	Parameter unit screen
1)	On the position block screen Press [SHIFT] and [3] to move to the speed block reference screen. Press $[\blacktriangle]/[\nabla]$ to select the block to be set (select the position block).	5 Speed Block ▲ Speed 2000.0 Acc 20000 Dec 20000 ▼
2)	Press [CAN] to move to the position block data input selection screen.	85 Pos.Bloc ▲ → Pos 12345.6 M code 68 Speed No 5 ▼

(c) Teaching

Teaching can be used for absolute command positioning.

Switch the automatic/manual operation mode signal (RY7) off and the zeroing signal (RY9) off to select the manual operation mode, and use the parameter unit to perform teaching in the following procedure:

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (call the data setting mode screen). Press $[\blacktriangle]/[\nabla]$ to select the position block. Press $[\]$ to define the position block.	<set mode=""> ▲ →Pos. Block Speed Block Edit :HELP ▼</set>
2)	Press [^E 8] and [^B 5] on the ten-key pad to specify the position block number to be set (for 85). Press [$_{4}$] to define the position block number to be set.	<pos.set> Block No. 85 Read:₄J</pos.set>
3)	If the key pressed is wrong, press [STOP/RESET] to return to step 2).	<pos.set> Block No. 300 Error:RST</pos.set>
4)	Press $[\blacktriangle]/[\nabla]$ to specify the position block number to be set (for 85). Press $[_]$ to define the position block number to be set.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5)	Press [SHIFT] and [1] to switch to the teaching screen. Press $[\blacktriangle]/[\nabla]$ to select the position block number in which teaching is to be performed.	85 Teach Pos 12345.6 (1000.0) Write: ← mm ▼
6)	Manual operation By jogging or using the manual pulse generator, move the machine to the target position. Press [] to define the position data to be set (define 8570.0). Write complete Press [SHIFT] and [1] to return to step 5).	85 Teach ▲ Pos 12345.6 (8570.0) Write: ← mm ▼
7)	If the key pressed is wrong, press [STOP/RESET] to return to step 6).	85 Teach Pos 8570.0 (-305.3) Pr02 Mis.Set 85 Teach 85 Teach Pos 8570.0 (1.8) OT Er.:RST

4. POSITIONING SYSTEM

(2) Speed block data input

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (call the data setting screen). Press $[\blacktriangle]/[\nabla]$ to select the block to be set (select the speed block). Press $[_]$ to define the block to be set.	<set mode=""> Pos. Block →Speed Block Edit :HELP ▼</set>
2)	Press $[^{B}5]$ on the ten-key pad to specify the speed block number to be set (for 5). Press $[_{4}]$ to define the speed block number to be set.	<speed set=""> Block No. 5 Read: ←</speed>
3)	If the key pressed is wrong, press [STOP/RESET] to return to step 2).	<speed set=""> Block No. 9 Error:RST</speed>
4)	Press $[\blacktriangle]/[\nabla]$ to specify the speed block number to be set (for 5). Press $[_]$ to define the speed block number to be set.	<pre><speed set=""> ▲ 5 → 2000.0 6 1000.0 7 3000.0</speed></pre>
5)	On the data list screen, press $[\blacktriangle]/[\nabla]$ to select the data field into which data is to be input (select the speed). Press $[_]$ to define the data field into which data is to be input (define the speed).	5 SpeedBlock ▲ →Speed 2000.0 Acc 10000 Dec 10000 ▼
6)	On the input screen, press [3] [0] [0] [0] on the ten-key pad to enter the speed (for $3000r/min$). Press [$_{4}$] to write the speed and press [CAN] to proceed to step 7).	5 Ref.Speed 2000.0 3000.0 Write : ← r/min ▼
7)	On the data list screen, press $[\blacktriangle]/[\nabla]$ to select the data field into which data is to be input (select the acceleration time constant). Press $[_]$ to define the data field into which data is to be input (define the acceleration time constant).	5 SpeedBlolck ▲ Speed 3000.0 →Acc 20000 Dec 20000 ▼
8)	On the input screen, press [1] $[{}^{A}4]$ $[{}^{B}5]$ $[{}^{C}6]$ $[{}^{D}7]$ on the ten-key pad to enter the acceleration time constant (for 14567msec). Press $[_{4}]$ to write the acceleration time constant and press [CAN] to proceed to step 9).	5 Acc time ▲ 20000 14567 Write:← msec ▼
9)	On the data list screen, $\operatorname{press}[\blacktriangle]/[\nabla]$ to select the data field into which data is to be input (select the deceleration time constant). Press $[_]$ to define the data field into which data is to be input (define the deceleration time constant).	5 SpeedBlock ▲ Speed 3000.0 Acc 14567 →Dec 20000 ▼
10)	On the input screen, press [1] $[^{A}4] [^{B}5] [^{C}6] [^{D}7]$ on the ten-key pad to enter the deceleration time constant (for 14567msec). Press $[_{\blacktriangleleft}]$ to write the deceleration time constant. Speed block input complete. Press [CAN] twice to return to step 4).	5 Dec time 20000 14567 Write: ← msec ▼
11)	If the key pressed is wrong, press [STOP/RESET] to return to the input screen, or press [CAN] to return to the data list screen.	5 Dec time 20000 99999 Error :RST ▼

(3) Data copy

This function reads the point table data (position blocks, speed blocks) of the servo amplifier to the parameter unit and writes them from the parameter unit. By using this function, data can be read once to the parameter unit and then copied to the other servo amplifier.

(a) Data read

Reads data from the servo amplifier to the parameter unit.

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (call the data setting screen). Press [SHIFT] [3] (position data copy initial screen). Press [CAN] to return to the previous screen.	<set mode=""> →Pos. Block Speed Block Edit :HELP ▼</set>
2)	Press $[\blacktriangle]/[\nabla]$ to specify the mode (specify READ). Press $[_]$ to define the mode. If the key press is wrong, press [STOP/RESET] or [CAN] to return to step 1).	<datacopy> → READ WRITE COMPARE </datacopy>
3)	Read complete. Press [CAN] to return to step 1).	<data copy=""> COMPLETE Mode sel.:CAN</data>

(b) Data verify

Verifies the data in the parameter unit with that in the servo amplifier.

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (call the data setting screen). Press [SHIFT] [3] (position data copy initial screen). Press [CAN] to return to the previous screen.	<set mode=""> ▲ → Pos. Block Speed Block Edit :HELP ▼</set>
2)	Press $[\blacktriangle]/[\nabla]$ to specify the mode (specify COMPARE). Press $[_]$ to define the mode.	<data copy=""> ▲ →READ WRITE COMPARE ▼ <data copy=""> Comparing Not Power Off</data></data>
3)	Verify complete Press [CAN] to return to step 1).	< DATA COPY > COMPLETE Mode sel.: CAN
4)	When incorrect data exists in the data verified Press [SHIFT] to check incorrect data numbers. When incorrect data overflows a single screen, press [▲]/[▼] to switch to [SHIFT] the preceding/next screen. Press [CAN] to return to step 1).	<pre><data copy=""> Compare Er. Error No. :SFT Mode sel.:CAN Er.Data No. P010P P010S P050M P185M P185S S002V ▼</data></pre>

Error number make-up

(c) Data write

Writes the data in the parameter unit to the servo amplifier.

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (call the data setting screen). Press [SHIFT][3] (position data copy initial screen). Press [CAN] to return to the previous screen.	<set mode=""> → Pos. Block Speed Block Edit :HELP ▼</set>
2)	Press $[\blacktriangle]/[\nabla]$ to specify the mode (specify WRITE). Press $[_]$ to define the mode.	<datacopy> ▲ → READ WRITE COMPARE ▼</datacopy>
3)	When write is inhibited Press [CAN] to return to step 1).	<pre><data copy=""> Write Inhibit SON ALM Press "CAN"</data></pre>
4)	Press []] to execute write. Press [STOP/RESET] to stop write and return to step 1).	<data copy=""> Write ? Yes: J No:RST <data copy=""> Writeing Not Power Off</data></data>
5)	Write complete Press [CAN] to return to step 1).	<data copy=""> COMPLETE → Power Off</data>
6)	When incorrect data exists in the data written 1. Press [↓] to write only the correct data. 2. Press [STOP/RESET] to stop write and return to step 1). 3. Press [SHIFT] to check incorrect data numbers. When incorrect data overflows a single screen, press [▲]/[▼] to switch to the preceding/next screen.	ErrorNo.:SFT Right Data Write Yes:↓ No:RST Wrong Data P000P P001P S001V S001A S101D S002V ▼

Error number make-up

(4) Position data edition

(a) Data insertion

Inserts data into the specified position block on a block basis.

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (call the data setting screen). Press [HELP] (position block edition initial screen). Press [CAN] to return to the previous screen.	<set mode=""> → Pos. Block Speed Block Edit :HELP ▼</set>
2)	Press $[\blacktriangle]/[\nabla]$ to specify the mode (specify INSERT). Press $[_]$ to define the mode (define INSERT).	<pos. edit=""> ▲ →INSERT DELETE ▼</pos.>
3)	Press [2] [5] [0] on the ten-key pad to specify the block number into which data is to be inserted (for No.250). Press [$_{4}$] to execute insertion.	<block ins.=""> Block No. 250 Yes: No:RST</block>
4)	During insertion Data in block No.250 is shifted to No.1 and No.250 is vacated. On completion of insertion, the positioning address list screen is displayed.	<block ins.=""> Inserting Not Power Off 250→ 0.0 ▲ 251 78901.2 252 34567.8 253 90123.4 ▼</block>
5)	When insertion cannot be performed (outside the block number setting range) Press [STOP/RESET] to return to step 3).	<block ins.=""> Block No. 300 Error:RST</block>
6)	When the data of the last block will be deleted by executing insertion Press []] to return to step 3). Press [STOP/RESET] to execute insertion.	<block ins.=""> No. 255 Delete Yes: No:RST</block>

Concept of data insertion

When inserting data, data in and after the block where data is to be inserted is shifted to the following blocks. When any unused blocks exist in block No.s 0 through 255, the data of the first unused block is deleted and data is shifted to that block. The data of the following unused blocks and subsequent used blocks are not shifted. When data exists in all blocks, block No.255 is deleted.

Example: When inserting the following data into block No.002					
Position data		M code Speed block N			
	1150.0	00	05		

	Before insertion			
	Position	Position	Micodo	Speed
	block No.	data	IN CODE	block No.
	000	1000.0	00	01
	001	1100.0	00	01
	002	1200.0	00	02
	003	1300.0	00	03
	004	1400.0	00	04
	005	1500.0	00	02
Linuard	006	0.0	00	00
blocks	007	0.0	00	00
DIOCKS	008	0.0	00	00
	009	2000.0	00	01
	010	2100.0	00	01
	011	2200.0	00	02
	:	:	•	•
	255	2200.0	00	02

	After insertion			
	Position block No.	Position data	M code	Speed block No.
Data	000	1000.0	00	01
inserted	001	1100.0	00	01
	002	1150.0	00	05
	003	1200.0	00	02
	004	1300.0	00	03
	005	1400.0	00	04
	006	1500.0	00	02
Unused	007	0.0	00	00
blocks	008	0.0	00	00
	009	2000.0	00	01
	010	2100.0	00	01
	011	2200.0	00	02
	:	:	:	:
	255	2200.0	00	02

Data is shifted down to position block No.007 and one unused position block is deleted. Data in and after position block No.007 remain unchanged.

(b) Data deletion

Deletes the position data of the specified position block number.

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (call the data setting screen). Press [HELP] (position block edition initial screen). Press [CAN] to return to the previous screen.	<set mode=""> ▲ →Pos. Block Speed Block Edit :HELP ▼</set>
2)	Press $[\blacktriangle]/[\nabla]$ to specify the mode (specify DELETE). Press $[_]$ to define the mode (define DELETE).	<pos.edit> INSERT →DELETE</pos.edit>
3)	Press [2] [5] [0] on the ten-key pad to specify the block number from which data is to be deleted (for No.250). Press [$_{4}$] to execute deletion.	<block del.=""> Block No. 250 Yes: No:RST</block>
4)	During deletion The data of block No. 250 is deleted, the data from No. 251 on are shifted up one place, and No. 255 is vacated. On completion of deletion, the positioning address list screen is displayed.	<block del.=""> Deleting Not Power Off 250→ 3000.0 ▲ 251 4000.0 252 5000.0 253 6000.0 ▼</block>
5)	When deletion cannot be performed (outside the block number setting range) Press [STOP/RESET] to return to step 3)	<block del.=""> Block No. 300 Error:RST</block>

Concept of data deletion

When deleting data, data in and after the block where data is deleted is shifted to the preceding blocks. When any unused blocks exist in block No. 0 through 255, an unused block is added and data before that additional unused block is shifted.

The data of the unused blocks and subsequent used blocks are not shifted.

When data exists in all blocks, an unused block is added to block No.255.

		Before deletion				
	Position block No.	Position data	M code	Speed block No.		
Data to be	000	1000.0	00	01		
deleted	001	1100.0	00	01		
	002	1150.0	00	05		
	003	1200.0	00	02		
	004	1300.0	00	03		
	005	1400.0	00	04		
	006	1500.0	00	02		
Unused	007	0.0	00	00		
blocks	008	0.0	00	00		
-	009	2000.0	00	01		
	010	2100.0	00	01		
	011	2200.0	00	02		
	:	:	:	:		
	255	2200.0	00	02		

		After deletion				
	Position block No.	Position data	M code	Speed block No.		
	000	1000.0	00	01		
	001	1100.0	00	01		
	002	1200.0	00	02		
	003	1300.0	00	03		
	004	1400.0	00	04		
-	005	1500.0	00	02		
Unused	006	0.0	00	00		
blocks	007	0.0	00	00		
DIOCKS	008	0.0	00	00		
	009	2000.0	00	01		
	010	2100.0	00	01		
	011	2200.0	00	02		
	:	:	:	:		
	255	2200.0	00	02		

One unused position block (No.006) is added. Data in and after position block No.007 remain unchanged.

Example: When deleting the data of block No.002

5. ROLL FEEDING SYSTEM

5.1 Roll feeding system specifications

	Item		Specifications
		Operational specifications	Position block number is specified for positioning.
l system	Point table number input	Position command input	 Using the contact input or the CC-Link, positions are selected from those in 2 position blocks. Feed length setting range for 1 position: +1um to +999.999m
		Speed command input	You can select 2 speeds by contact input or CC-Link when 1 station is occupied or 8 speeds and acceleration and deceleration times when 2 stations are occupied.
nan		System	Incremental command
Comn		Operational specifications	Digital switch or contact data input is used for positioning.
	Position data input	Position command	Remote register is used to set position command data.
	(when 2 stations are	input	- Feed length input setting range: $\pm 1 \ \mu m$ to $\pm 999.999 m$
	occupied)	Speed command	 Remote register is used to make selection from 8 speed blocks.
		input	 Remote register is used to set speed command data (speed).
		System	Incremental command
	Automatic mode		Positioning operation is performed once under the speed/position commands.
		JOG	JOG operation is performed by the parameter unit or contact input under the
node			Manual pulse generator (MR-HDP01) is used for manual feed. Input pulse specifications: 2-phase pulse train with 90°phase difference
u uc			(A phase, B phase)multiplied by 4
atic	Manual mode	Manual pulse	Input pulse form: open collector input
per		generator	Max. Input pulse frequency : open collector input 200kpps
0		(MR-HDP01)	1200007/min for MR-HDP01
			\times 100) of the manual pulse generator input pulses
			\sim 100) of the manual pulse generator input pulses.
			multiplying factor (\times 1, \times 10, \times 100).
			Acceleration/deceleration method setting (S-shaped
			acceleration/deceleration, separate settings for acceleration and
			deceleration)
Fu	nctions of positioning co	ontrol	Backlash compensation
			Alarm code output (when 2 stations are occupied)
			• External limit switches used by changing the internal parameter input
			contact assignment.

5.2 Standard connection example

	 Any person who is involved in wiring should be fully competent to do the work. Before starting wiring, make sure that the charge lamp is off more than 10 minutes after power-off, and then confirm that the voltage across terminals P-N is safe with a tester or similar device. A failure to do so can cause an electric shock. Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you may get an electric shock. The cables should not be damaged, stressed excessively, loaded heavily, or pinched. Otherwise, you may get an electric shock. 			
	Wire the environment compatible and economic other wire the company meter many			
CAUTION	 Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate, resulting in injury. Connect cables to correct terminals to prevent a burst, fault, etc. Ensure that polarity (+,-) is correct. Otherwise, a burst, fault, etc. may occur. The surge absorbing diode installed to the DC relay designed for control output should be fitted in the specified direction. Otherwise, the signal is not output due to a fault, disabling the forced stop and other protective circuits. Servo amplifier VIN (24VDC) Control Output RA Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be given to electronic equipment used near the servo amplifier. Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF option) with the power line of the servo amplifier. 			
	resistor, causing a fire.			
	Do not modify the equipment.			
	POINT			

• Refer to Section 6.3 for connection of the power supply system, Section 6.4 for connection with the servo motor, and Section 3.2.2 for connection of CC-Link.

5.2.1 In factory-shipped status

Refer to the next page for Note.

5. ROLL FEEDING SYSTEM

- Note:1. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the forced stop and other protective circuits.
 - 2. The forced stop switch must be installed.
 - 3. The sum of currents that flow in the external relays should be 200mA max. If it exceeds 200mA, supply interface power from external.
 - 4. When using the internal power supply (VDD) as the interface power supply, always connect VDD-VIN. Keep them open when supplying external power.
 - 5. Change the setting of parameter No.52 to " $\Box \Box \Box \Box$ " to use LA, LAR, LB, LBR, LZ and LZR as encoder pulse outputs.
 - 6. Change the setting of parameter No.3 to "□□1□" to use CPO as an electromagnetic brake interlock or the setting of parameter No.44 to "□1□□" to use CPO as a torque limit-in-progress.
 - 7. ALM-SG are connected in a normal status, i.e. when there is no alarm.
 - 8. The upper limit of the overriding speed is the permissible speed.

5.2.2 Input signals assigned to CN1

The following connection diagram assumes that the input signals that may be assigned to CN1 have all been assigned in the setting of parameter No.66.

Refer to the next page for Note.

5. ROLL FEEDING SYSTEM

- Note:1. Connect the diode in the correct direction. If it is connected reversely, the servo amplifier will be faulty and will not output signals, disabling the forced stop and other protective circuits.
 - 2. The forced stop switch must be installed.
 - 3. The sum of currents that flow in the external relays should be 200mA max. If it exceeds 200mA, supply interface power from external.
 - 4. When using the internal power supply (VDD) as the interface power supply, always connect VDD-VIN. Keep them open when supplying external power.
 - 5. Change the setting of parameter No.52 to " $\Box \Box \Box \Box$ " to use LA, LAR, LB, LBR, LZ and LZR as encoder pulse outputs.
 - 6. Can be used as the CN1 external input signals in the initial status of parameter No. 66.
 - 7. Change the setting of parameter No.3 to "□□1□" to use CPO as an electromagnetic brake interlock or the setting of parameter No.44 to "□1□□" to use CPO as a torque limit-in-progress.
 - 8. ALM-SG are connected in a normal status, i.e. when there is no alarm.
 - 9. The upper limit of the overriding speed is the permissible speed.

5.3 I/O connectors

5.3.1 Connector signal layouts

POINT
The pin-outs of each connector are as viewed from the wiring section of the cable connector.

CN2 (For encoder signal) Type PCR-S20FS (Honda Tsushin make) 12 2 LG LG 3 13 14 4 MRR MR BAT 15 5 16 6 LG P5 17 7 8 18 LG P5 P5 19 9 20 10 SD

CN1 Type PCR-S50FS (Honda Tsushin make)

	26		1
27	N15R	2	P15R
TLAP	28	OVR	3
29	LG	4	LG
	30	LA	5
31	LG	6	LAR
FPA	32	LB	7
33	FPB	8	LBR
OP	34	LZ	9
35	LG	10	LZR
	36		11
37	\backslash	12	$\langle \rangle$
CR	38	SON	13
39	TL	14	DEC
PS2	40	JFS	15
41	SG	16	STP
MD0	42	SG	17
43	MD1	18	SG
MD2	44	PPO	19
45	ST1	20	NPO
ST2	46	VIN	21
47	EMG	22	VDD
SG	48	VDD	23
49	ALM	24	СРО
RD	50	INP	25
	SD		\sim

CN3
Type 171822-4 (AMP make)

(M01) 1 (M02) 2	
	ㅁ 레
(M0G) 4	

5.3.2 Signal explanations

Refer to Section 6.1.1 for the I/O interfaces (symbols in the I/O column of the table). (1) CN1 $\,$

Signal name	Symbol	Pin No.	Description	I/O division
Digital I/F	VIN	20	Driver power supply input terminal for digital interface	\backslash
power supply			Input 24VDC ±10% for input interface.	
input			When using an external power supply, connect a 24VDC power supply of	
-			200mA or more to this terminal.	
Driver power	VDD	21,22	+24V ±10% is output across VDD-SG.	
supply			Connect with VIN when using this power supply for the digital interface.	
			Permissible current: 200mA	
Open collector	OPC	11	When using a manual pulse generator, supply 24VDC to this terminal.	
power input				
24V common	SG	16,17	Common terminals for VDD and VIN. Isolated from LG.	
		40,47		
DC power	P15R	1	+15VDC is output across P15R-LG. Use as a power supply for OVR/TLAP.	
supply			Permissible current: 30mA	
	P15N	26	-15VDC is output across P15N-LG. Use as a power supply for OVR/TLAP.	
			Permissible current: 30mA	
Control	LG	3,28	Common terminals for OVR, TLAP, LA, LAR, LB, LBR, LZ, LZR, FPA, FPB	
common		30,34	and OP.	
Shield	SD	50	Connect the servo amplifier end of the shield cable.	
Servo on	SON	12	Refer to Section 3.5.2 (2)(a).	DI-1
Restart	DEC	13		
Speed selection	JFS	14		
Temporary stop	STP	15		
Manual pulse	PP0	18	Connect the manual nulse generator (MR-HDP01).	DI-2
generator	NP0	19	Refer to Section 14.1.12 for details.	DI-2
In position	INP	24	Refer to Section 3.5.2 (2)(a)	DO-1
Clear	CR	37		DI-1
Torque limit	TI	38		DII
selection	11	00		
Second feed	PS2	39		
distance	1.04			
Automatic	MD0	41		
operation	1120			
selection				
Manual	MD1	42		
operation				
selection				
Remote manual	MD2	43		
operation				
selection				
Forward	ST1	44		
rotation start	~ 1 1			
Reverse	ST2	45		
rotation start	~ 1 ₩	10		
Forced stop	EMG	46	This signal is used for CN external input only	DI-1
sector scop		10	Refer to Section 3.5.2 (2)(b).	

5. ROLL FEEDING SYSTEM

Signal name	Symbol	Pin No.	Description	I/O division
Zeroing	ZP	23	Refer to Section 3.5.2 (2)(b).	DO-1
completion			CN1-23 is set to rough match (ZP) in the initial status but can be changed for	
Limiting torque	TLC	(23)	use as limiting torque (TLC) or electromagnetic brake interlock (MBR) by	
Electromagnetic	MBR	(23)	setting of parameter No. 3 or 44.	
brake inter lock				
Trouble	ALM	48	Refer to Section 3.5.2 (2)(b).	Ī
Ready	RD	49		
Encoder pulse	FPA	31	In CCW rotation of the servo motor, FPA leads FPB by $\pi/2$.	DO-2
output (open	FPB	32	Pulses are output in the range 100 to 5000 pulses/rev according to the	
collector			parameter No. 39 setting.	
system)				
Encoder Z-	OP	33	Z-phase pulse signal output terminal.	DO-2
phase pulse			Output the zero-point signal of the servo motor encoder.	
			OP-SG are connected in the zero-point position. The minimum pulse width is	
			approx. 1.77 ms.	
External digital	LA	4	External digital display signal output terminal.	DO-2
display signal	LAR	5	When using the MR-DP60 external digital display, connect it to this	
	LZ	8	terminal.	
	LZR	9		
Encoder pulse	LA	4	When using the encoder output signal (differential line driver system), make	DO-2
(differential	LAR	5	it valid in parameter No. 52.	
line driver	LA	6		
system)	LAR	7		
Override	OVR	2	Apply -10 to $+10V$ across OVR-LG to limit the servo motor speed.	Analog input
			0[%] for -10[V], 100[%] for 0[V], 200[%] for 10[V].	
External analog	TLAP	27	Apply 0 to +10V across TLAP-LG to limit the servo motor-generated torque.	Analog input
torque limit			Zero torque for 0[V], max. torque for 10[V].	

5.3.3 Control input/output signals

(1) Start signals and operation mode select signals

The start signals change as indicated below depending on the operation mode selection conditions. Indicates that the signal is made valid when it is switched from off to on, and $_$ is invalid if switched on during operation. Indicates that the signal is valid while it is on, and $_$ is made invalid when switched off.

Operation mode Signal		Automatic	Manual	Remote manual	
	Automatic operation	RY7	1 (ON)	0 (OFF)	0 (OFF)
	Manual operation	RY8	0 (OFF)	1 (ON)	1 (ON)
	Remote manual operation	RY9	0 (OFF)	0 (OFF)	1 (ON)
1	Forward rotation start	RYA	1(ON)		1(ON)
(Note)CN	Reverse rotation start	RYB	1(ON)		(Reverse rotation JOG)
	Temporary stop	RY3	1(ON)	1(ON)	
ter unit	JOG	FWD REV		PUSH (Forward/reverse rotation JOG)	
Paramet	1STEP	ISTEP		PUSH (1-step feed)	
Manual pulse generator					

Note : If you turn on-off RY7/RY8/RY9 during operation in the automatic operation mode, the operation mode cannot be changed.

The operation mode is switched to the one specified by RY7, RY8 and RY9 after completion of positioning to the target position.

- (2) Forward rotation start (RYA) Reverse rotation start (RYB)
 - (a) Make up the sequence so that the start signal is switched on after the main circuit has been set up. The start signal is invalid if it is switched on before the main circuit is set up. Normally, interlock is provided between the start signal and ready signal (RX0).
 - (b) In the servo amplifier, a start is executed when the start signal changes from "0" (OFF) to "1" (ON). The internal processing of the servo amplifier delays 3ms maximum. The other signal delays 10ms maximum.

- (c) The start signal (RYA/RYB) is not accepted during operation. The next operation must be started after the rough match signal has been output with the rough match output range set to zero, or after the in-position signal has been output.
- (3) Restart (RY1)

Turning the temporary stop (RY3) to "1" (ON) to make a stop and then turning the restart (RY1) to "1" (ON) executes the operation of the remaining feed length.

(4) Clear (RY6)

Switch this signal on after a temporary stop to clear the remaining distance. Switch this signal on during operation to clear the feed command and droop and bring the servo motor to a sudden stop. Do not switch this signal on during high-speed operation, because it will bring the servo motor to a sudden stop, increasing the shock and vibration given to the machine.

(5) Positioning completion signal (RX1)

"1" (ON) when the droop of the deviation counter falls within the preset positioning completion range (parameter No.16). When operation is performed at low speed, the low droop may keep the RX1 signal "1" (ON) if the positioning completion range (parameter No.16)setting is large.

(6) Rough match (RX2)

This signal turns to "1" (ON) when the command remaining distance is less than the rough match output range (parameter No. 17).

Refer to the timing chart in this section (5).

(7) Override

The override (OVR) may be used to change the servo motor speed. The following table lists the signals and parameter related to the override:

Item	Name	Remarks
Analog input signal	Override (OVR)	
Contact input signal	Override selection (RY12)	May be used only when 2 stations are specified.
Demonster	No.24 function selection 5	□□□1: Override used
Parameter	No.47 override offset	-9999 to 9999mV

To use override, make it available by setting " $\Box \Box \Box \Box 1$ " in parameter No. 24.

(a) Override (OVR)

By applying a voltage (-10 to +10V) to the override (OVR) terminal, change values can be set from outside consecutively. The following graph shows the relationship between the input voltage and the ratio of actual speed to preset speed.

Refer to the following diagram when using the 15V power output (P15R, N15R) of the controller.

(b) Override selection (RY12)

Select between making override (OVR) Valid and invalid. This signal may be used only when 2 stations are specified.

Using the override selection (RY12), choose a change value as follows:

RY12	Speed change value
0 (OFF)	No change
1 (ON)	Override (OVR) setting is made valid.

(c) Override offset (parameter No.47)

Using parameter No.47, the offset voltage can be set relative to the input voltage for the override (OVR). The setting is between -9999 to 9999mV.

(8) Torque limit

The following table lists the signals and parameters related to the torque limit:

Item	Name	Remarks
Analog input signal	External torque limit (TLAP)	
Contact input signals	Torque limit selection(RY4)	Set " $\Box 0 \Box \Box$ " (initial value) in parameter No.41
Contact output signal	Limiting torque (RXA)	
	No.40 internal torque limit	0 to 100%
	No.54 internal torque limit2	0 to 100%
Parameters	No.48 torque limit offset	-9999 to 9999mV
	No.41 input signal selection	Selection of the rotation direction in which torque limit is executed

The torque limit is available in two types: internal torque limit set in parameters and external torque limit using analog input signal. This function limits generated torque on the assumption that the maximum torque of the servo motor is 100%.

(a) Internal torque limits (Parameter No.40, 54)

Use parameter No.40 and 54 to set the internal torque limit values. The following graph shows the generated torque relative to the setting.

(b) External torque limit (TLAP)

By applying a voltage (0 to +10V) to the external torque limit (TLAP) terminal, limit values can be set from outside consecutively. The following graph shows the relationship between input voltage and limit value.

Depending on the servo amplifier, the limit value has about 5% variations to the input voltage. As this may not cause torque to be limited sufficiently at less than 0.05V, use this function at the voltage of 0.05V or more.

Refer to the following diagram when using the 15V power output (P15R) of the servo amplifier:

(c) Torque limit selection (RY4)

To use torque limit selection (RY4), set " $\Box 0 \Box \Box$ " (initial value) in parameter No. 41.

This input signal can be used to choose the torque limit value made valid. When not using torque limit selection (LSP), set " \Box 1 \Box \Box " in parameter No. 41. At this time, the internal torque limit (parameter No. 40) setting is always made valid.

When " $\Box \Box 0 \Box$ " (initial value) is set in parameter No. 41

Switched between external torque limit (TLAP) and internal torque limit (parameter No. 40).

Using the internal torque limit selection (RY4), choose the limit value as follows. When LSD-SG are shorted, the smaller value of the external torque limit and internal torque limit is chosen:

RY4	Torque limit value
	External torque limit (TLAP) if External torque limit (TLAP) < internal torque limit
1 (ON)	Internal torque limit if External torque limit (TLAP) > internal torque limit
0 (OFF)	Internal torque limit

2) When " $\Box \Box 1 \Box$ " is set in parameter No. 41

Switched between internal torque limit (parameter No. 40) and internal torque limit 2 (parameter No. 54).

Using the internal torque limit selection (RY4), choose the limit value as follows. When RY4 is turned on, the smaller value of the internal torque limit and internal torque limit 2 is chosen:

RY4	Torque limit value
0 (OFF)	Internal torque limit 2
1 (ONI)	Internal torque limit if internal torque limit < internal torque limit 2
I (ON)	Internal torque limit 2 if internal torque limit > internal torque limit 2

(9) Manual pulse generator pulse magnification selection (RY13, RY14)

These signals may be used only when 2 stations are occupied. Using RY13 and RY14, choose the pulse multiplying factor as indicated below.

Dulas meanification	(Note) Input signal		
Pulse magnification	RY14	RY13	
1 time	0	0	
10 time	0	1	
100 time	1	0	

Note.0:OFF

(10) Alarm code output (RX6, RX7, RX8, RX9)

The alarm type is output in 4-bit code.

For more information, refer to Section 11.4.1.

^{1:}ON

- 5.4 When switching power on for the first time
- 5.4.1 Pre-operation checks

Before starting operation, check the following:

- (1) Wiring
 - (a) A correct power supply is connected to the power input terminals (R, S, T) of the servo amplifier.
 - (b) The servo motor power supply terminals (U, V, W) of the servo amplifier match in phase with the power input terminals (U, V, W) of the servo motor.
 - (c) The servo motor power supply terminals (U, V, W) of the servo amplifier are not shorted to the power input terminals (R, S, T).
 - (d) The servo amplifier and servo motor are grounded securely.
 - (e) When using the regenerative brake option, twisted cables are used and the lead of the built-in regenerative brake resistor has been removed.
 - (f) When stroke end limit switches are used, the signals across LSP-SG and LSN-SG are on during operation.
 - (g) 24VDC or higher voltages are not applied to the pins of connectors CN1.
 - (h) SD and SG of connectors CN1 are not shorted.
 - (i) The wiring cables are free from excessive force.
- (2) Environment

Signal cables and power cables are not shorted by wire offcuts, metallic dust or the like.

- (3) Machine
 - (a) The screws in the servo motor installation part and shaft-to-machine connection are tight.
 - (b) The servo motor and the machine connected with the servo motor can be operated.

5.4.2 Startup

 Do not operate the switches with wet hands. You may get an electric shock. Do not operate the controller with the front cover removed. High-voltage terminals and charging area are exposed and you may get an electric shock. During power-on or operation, do not open the front cover. You may get an electric shock.
 Before starting operation, check the parameters. Some machines may perform unexpected operation.
 During power-on or for some time after power-off, do not touch or close a parts (cable etc.) to the servo amplifier heat sink, regenerative brake resistor, servo
motor, etc. Their temperatures may be high and you may get burnt or parts may
damaged.

Connect the servo motor with a machine after confirming that the servo motor operates properly alone. For startup reference, a single machine structure will be described. Refer to this section and start up the machine safely.

(1) Machine conditions

- (a) Absolute position detection system used
- (b) Command resolution: 10µm
- (c) Command system: Roll feeding system
- (d) Electronic gear calculation

(e) Position block No.1 is used to execute automatic operation once.

(2) Startup procedure

- (a) Power on
 - 1) Turn the servo on signal (RY0) to "0" (OFF).
 - 2) When main circuit power/control circuit power is switched on, "Position" appears on the parameter unit display.
- (b) Test operation

Using JOG operation in the "test operation mode" of the Parameter unit, make sure that the servo motor operates. (Refer to Section 8.2.)

(c) Parameter setting

Set the parameters according to the structure and specifications of the machine. Refer to Chapter 7 for the parameter definitions and to Sections 8.2 for the setting method.

Parameter	Name	Setting	Description
No.2	Feeding system		Roll feeding system MR-RB032 regenerative brake option is used.
No.3	Function selection 1		Linear acceleration/deceleration system Used in incremental system.
No.4	Function selection 2		As command resolution is 10 μm, feed length multiplying factor of 10 times is chosen. Position data unit [mm] is selected. Digital display, automatic decimal point setting selection.
No.5	Electronic gear numerator (CMX)	2048	From calculation result of formula (5.1)
No.6	Electronic gear denominator (CDV)	20944	From calculation result of formula (5.1)

After setting the above parameters, switch power off once. Then switch power on again to make the set parameter values valid.

(d) Position block setting

Set the position block according to the operation pattern. Refer to Section 5.6.1 for the position block details and to Section 5.7 for the setting method. Setting of position block No. 0

Position data [×10 ^{s™} µm]	(Note) M code	Speed block No.
200000		1

Note: Enter no value.

Setting of speed block No. 1

Servo motor speed	Acceleration time constant	Deceleration time constant
[r/min]	[ms]	[ms]
2000	200	300

(e) Servo on

Switch the servo on in the following procedure:

1) Switch on main circuit/control power.

2) Turn the servo on signal (RY0) to "1" (ON).

When placed in the servo-on status, the servo amplifier is ready to operate and the servo motor is locked.

(f) Automatic operation

Set the input signals as listed below and switch on the forward rotation start (RYA) or reverse rotation start (RYB) to execute automatic operation in accordance with point table No. 0.

Signal name	Device No.	ON/OFF	Description
Automatic/manual selection	RY7	1 (ON)	Automatic operation mode
Manual operation	RY8	0 (OFF)	selected
Manual operation remote	RY9	0 (OFF)	
Servo on	RY0	1 (ON)	Servo-on status is reached.
Second feed distance	RY5	0 (OFF)	Position block No. 0 selected.

(g) Stop

In any of the following statuses, the servo amplifier interrupts and stops the operation of the servo motor:

1) Turn the servo on signal (RY0) to "0" (OFF).

The base circuit is shut off and the servo motor coasts.

2) Alarm occurrence

When an alarm occurs, the base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop.

3) Forced stop (EMG) OFF

The base circuit is shut off and the dynamic brake is operated to bring the servo motor to a sudden stop. Alarm AL.E6 occurs.

POINT

• A sudden stop indicates that a stop is made with the droop pulses erased.

5. ROLL FEEDING SYSTEM

5.5 Manual operation remote mode

For manual operation remote, set the operation mode selection signals (RY7, RY8, RY9) as listed below:

Operation mode selection signal	ON/OFF
RY7	0 (OFF)
RY8	1 (ON)
RY9	1 (ON)

5.5.1 Jog operation

(1) Speed setting

Using parameter No. 8 "JOG speed 1" and parameter No. 9 "JOG speed 2", set the servo motor speeds for JOG operation.

Setting parameter No.	Setting value
8	0 to max. speed
9	(r/min)

Choose the JOG operation speed with the speed selection signal (RY2). The acceleration/ deceleration time constants for JOG operation are those of speed block No. 1.

RY2	Setting value
0 (OFF)	JOG speed 1
1 (ON)	JOG speed 2

(2) Start

Turning the forward rotation start (RYA) or reverse rotation start (RYB) to "1" (ON) rotates the servo motor while it is "1" (ON). At this time, the rotation direction is as indicated in the following table:

Chart simul	Parameter No. 2			
Start signal				
RYA	CCW (address increase)	CW (address increase)	CCW (address decrease)	CW (address decrease)
RYB	CW (address decrease)	CCW (address decrease)	CW (address increase)	CCW (address increase)

5. ROLL FEEDING SYSTEM

(3) Timing chart

5.5.2 Manual pulse generator operation

(1) When 1 station is occupied

Set parameter No. 30 as indicated below to make operation from the manual pulse generator valid. Choose the pulse multiplying factor of the manual pulse generator at this time.

F	aramete	er No. 30	
	Achine feedrate per revolution of manual pulse generator in metric system		
	Setting	Manual pulse generator	* Feed distance/revolution
	0	Not used	
	1	Used/pulse 1-time multiplication selected	100 µm
	2	Used/pulse 10-time multiplication selected	1mm (0.039in.)
	3	Used/pulse 100-time multiplication selected	10mm (0.394in.)

Turn the manual pulse generator (MR-HDP01) to rotate the servo motor. The turning direction of the manual pulse generator corresponds to the rotation direction of the servo motor as listed below:

Turning direction	Parameter No. 2			
of manual pulse generator				
Forward rotation	CCW (address increase)	CW (address increase)	CCW (address decrease)	CW (address decrease)
Reverse rotation	CW (address decrease)	CCW (address decrease)	CW (address increase)	CCW (address increase)

(2) When 2 stations are occupied

The pulse multiplying factor of the manual pulse generator can be changed by using pulse multiplying factor selection in parameter No. 30 and the pulse multiplying factor selection signals (RY13, RY14). Set parameter No. 30 as listed below to make operation from the manual pulse generator valid.

Paramet	er No. 30		
	Achine feedrate per revolution of manual pulse generator in metric system		
Setting	Manual pulse generator	* Feed distance/revolution	
0	Not used		
1	Used/pulse 1-time multiplication selected	100µm	
2	Used/pulse 10-time multiplication selected	1mm (0.039in.)	
3	Used/pulse 100-time multiplication selected	10mm (0.394in.)	
4	Used/pulse multiplication selected eternally Pulse multiplying factor is selected using RY13, RY14.		

Setting " \Box 4 \Box \Box " in parameter No. 30 enables the pulse multiplying factor to be set with the pulse multiplying factor selection signals (RY13, RY14). Relationships between the multiplying factors and pulse multiplying factor selection signals are listed below:

Multiplying factor	Pulse multiplying factor selection signals		
wulliplying factor	RY14	RY13	
1 times	0 (OFF)	0 (OFF)	
10 times	0 (OFF)	1 (ON)	
100 times	1 (ON)	0 (OFF)	

Turn the manual pulse generator to rotate the servo motor. The rotation direction is as in this section (1).
5. ROLL FEEDING SYSTEM

5.6 Manual operation mode

For manual operation, set the operation mode selection signals (RY7, RY8, RY9) as listed below:

Operation mode selection signal	ON/OFF
RY7	0 (OFF)
RY8	1 (ON)
RY9	0 (OFF)

5.6.1 JOG operation

(1) Speed setting

Using parameter No. 8 "JOG speed 1" and parameter No. 9 "JOG speed 2", set the servo motor speeds for JOG operation.

Setting parameter No.	Setting value
8	0 to max. speed
9	(r/min)

Choose the JOG operation speed with the speed selection signal (RY2). The acceleration/ deceleration time constants for JOG operation are those of speed block No. 1.

RY2	Setting value	
0 (OFF)	JOG speed 1	
1 (ON)	JOG speed 2	

(2) Start

When using the parameter unit, hold down the FWD or REV key of the parameter unit to rotate the servo motor. At this time, the rotation direction is as listed below:

Parameter unit	Parameter No. 2			
key				
FWD	CCW (address increase)	CW (address increase)	CCW (address decrease)	CW (address decrease)
REV	CW (address decrease)	CCW (address decrease)	CW (address increase)	CCW (address increase)

(3) Timing chart

Refer to Section 5.5.1 (3).

5.6.2 Stepped operation

Use the second feed distance signal (RY5) to choose the position block No. Press the "1STEP" key of the parameter unit to perform the operation of the position block No. currently being selected.

Position block No.	RY5
0	0 (OFF)
1	1 (ON)

5.6.3 Manual pulse generator operation

As in Section 5.5.2.

5.7 Automatic operation mode

Set the operation mode select signals (RY7, RY8, RY9) as listed on the right.

Operation mode select signal	ON/OFF
RY7	1 (ON)
RY8	0 (OFF)
RY9	0 (OFF)

5.7.1 Roll feeding operation according to point table

(1) Outline of point table data

The point tables consist of the position blocks used to set the position data and the speed blocks used to set the motor speeds, acceleration time constants and deceleration time constants.

When 1 station is specified, 2 position blocks and 2 speed blocks are usable. These data can be set to both non-volatile memory (EEP-ROM) and volatile memory (RAM).

When 2 stations are occupied, 2 position blocks and 8 speed blocks are usable. As when 1 station is specified, these data can be set to both non-volatile memory and volatile memory.

When writing the position/speed block data, select which memory to use to write the data using the instruction code.

Whether 1 station or 2 stations are specified, the data written to non-volatile memory are saved in the servo amplifier if power is switched off. Note that the write life of non-volatile memory is about 100,000 times. Hence, when rewriting the point table data frequently, write the data to volatile memory for operation.

(2) Setting of position block data

The number of data that may be set is 2 (position block No. s 0 to 1) as standard. Using the second feed distance signal (RY5), select position block No.1. 2-position point data

Position Block No.	Second feed distance (RY5)
0	0 (OFF)
1	1 (ON)

Set the position data (increment) in the position block of the position table data. At this time, do not enter any values into the M code and speed block No. items as they are invalid. For the position block setting procedure, refer to Section 5.8.

Position block No.	Position data	M code	Speed block No.
0	20000		
1	15000		

The unit ([mm], [inch]) and input range of the position data (increment) can be changed by setting parameter No.4.

(3) Setting of speed block data

By setting parameter No.3, either linear or S-shaped acceleration/deceleration pattern can be selected. The number of speed blocks that may be set is 2 speed blocks (speed block No. 1, 2) when 1 station is occupied, or 8 speed blocks (speed block No. 1 to 8) when 2 stations are occupied.

For linear acceleration/deceleration pattern, set " $\Box \Box \Box \Box 0$ " in parameter No.3. In the speed blocks, set the servo motor speeds, acceleration time constants and deceleration time constants.

Speed block No.	speed (r/min)	Acceleration time constant (ms)	Deceleration time constant (ms)
1	2000	220	20
2	500	100	50
(3)	(1200)	(50)	(55)
:	• •	•	• •
(8)	(1500)	(20)	(30)

For the speed block setting method, refer to Section 5.8.

For S-shaped acceleration/deceleration pattern, smooths the rise and fall of servo motor rotation. Set " $\Box \Box \Box 1$ " in parameter No.3.

Refer to Section 5.8 for the speed block setting procedure.

Set the servo motor speed, acceleration/deceleration time constant and S-shape time constant in the speed block. The acceleration time constant is equal to the deceleration time constant.

Speed block No.	Speed (r/min)	Acceleration/Deceleration time constant (ms)	S-shape time constant (ms)
1	2000	1000	100
2	500	1500	200
(3)	(1200)	(1200)	(100)
•	*	:	:
(8)	(1500)	(2000)	(200)

Item	Description
Speed	0 to max. speed r/min
Acceleration/deceleration time constant	0 to 20000ms
S-shape time	100 to 450ms Set the S-shape time constant to 10-20% of the acceleration/deceleration time constant.

(4) Selection of position and speed blocks

When the setting of each point table is complete, select the position block number using the second feed distance signal (RY5). The relationship between the second feed distance signal and position block No.s are listed below:

2-position point data

Position block No.	Second feed distance (RY5)	
0	0 (OFF)	
1	1 (ON)	

When 1 station is occupied, choose the speed block No. with the speed selection signal. When 1 station is occupied (2 speed blocks)

Speed block No.	RY2
1	1 (ON)
2	0 (OFF)

When 2 stations are occupied, make selection using the speed command data (RWw_6) of the remote register. (Refer to Section 3.6.3)

(5) Start

Turn the forward rotation start (RYA) or reverse rotation start (RYB) to "1" (ON) to rotate the servo motor to the preset position. The rotation direction of the servo motor depends on the setting of parameter No.2. The relationship between the set value and servo motor rotation is as listed below:

Set		Servo motor rotation direction					
value		RYA:ON RYB:ON					
0	CCV	N rotation (Current value increase)	CW rotation (Current value decrease)				
1	CW	rotation (Current value increase)	CCW rotation (Current value decrease)				
2	CCV	<i>N</i> rotation (Current value decrease)	CW rotation (Current value increase)				
3	CW	rotation (Current value decrease)	CCW rotation (Current value increase)				

(6) Timing chart

Shows operation performed after power on and zeroing completion. Refer to Section 3.6.3 (1) for the speed block No. setting timing chart when 2 stations are specified.

5.7.2 Roll feeding operation according to position command data

This operation is available only when 2 stations are occupied. Set the position command data (position data) to the CC-Link remote register to perform operation.

Set " $\Box \Box \Box \Box 1$ " or " $\Box \Box \Box 2$ " in parameter No. 65. Set " $\Box \Box \Box 1$ " to specify the speed block No., or " $\Box \Box \Box 2$ " to set the motor speed.

Parameter No. 65								
Command system selection								
	Set value	Position command	Speed command					
	0	Use RY5 to specify the position block No.	Use RY2 to specify the speed block No.					
1		Set the position data.	Use the remote register to set the speed data.					
	2		Use the remote register to set the motor speed.					

(1) Setting of position command data

Set the position data (incremental value) to the position command data lower 16 bits (RWw4) and position command data upper 16 bits (RWw5). The position data can be changed in unit ([mm], [inch]) and input range by the setting of parameter No. 4.

(2) Setting of speed command data

When specifying the speed block No., set the speed block No. to the speed command data (RWw6). When setting the speed, set the speed to the speed command data (RWw6). At this time, use the values set in speed block No. 1 as the acceleration and deceleration time constants.

(3) Start

Turning the forward rotation start (RYA) or reverse rotation start (RYB) to "1" (ON) rotates the servo motor to the preset position. The servo motor rotation direction is the same as in Section 5.6.1 (5).

(4) Timing chart

Operation performed after power on and zeroing completion is shown below. Refer to Section 3.6.3 (1) for the speed command data timing chart when 2 stations are occupied.

5.8 How to set the point table data from the parameter unit

(1) Position block data input

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (call the data setting mode screen). Press $[\blacktriangle]/[\nabla]$ to select the block to be set (select the position block). Press $[_]$ to define the block to be set (define the position block).	<set mode=""> ▲ →Pos. Block Speed Block Edit :HELP ▼</set>
2)	press [0] on the ten-key pad to specify the position block number to be set (for 0). Press $[\{4}]$ to define the position block number to be set.	<pos.set> Block No. Read:</pos.set>
3)	If the key press is wrong, press [STOP/RESET] to return to step 2).	<pos.set> Block No. 300 Error :RST</pos.set>
4)	press $[\blacktriangle]/[\nabla]$ to specify the position block number to be set (for 0). Press $[\4]$ to define the position block number to be set.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
5)	Press $[\blacktriangle]/[\nabla]$ to select the data field into which data is to be input (select the position data). Press $[_]$ to define the data field into which data is to be input (define the position data).	0 Pos.Bloc ▲ →Pos. 12345.6 M code Speed No ▼
6)	Press [^D 7], [^E 8], [¹ STEP •] and [^F 9] on the ten-key pad to enter position data (for 78.9). Press [₄] to write the position data and press [CAN] to return to step 1). Position block input complete press [CAN] twice to return to step 4).	0 Position ▲ 12345.6 78.9 Write: ↓ mm ▼
7)	If the key pressed is wrong, press [STOP/RESET] to return to step 6), or press [CAN] to return to step 5).	0 Position ▲ 12345.6 Error :RST ▼

(2) Speed block data input

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (call the data setting screen). Press [▲]/[▼] to select the block to be set (select the speed block). Press [_↓] to define the block to be set.	<set mode=""> ▲ Pos. Block →Speed Block Edit :HELP ▼</set>
2)	Press [1] on the ten-key pad to specify the speed block number to be set (for 1). Press $[\4]$ to define the speed block number to be set.	<speed.set> Block No. Read:</speed.set>
3)	If the key pressed is wrong, press [STOP/RESET] to return to step 2).	<speed.set> Block No. 9 Error :RST</speed.set>
4)	Press $[\blacktriangle]/[\nabla]$ to specify the speed block number to be set (for 1). Press $[_]$ to define the speed block number to be set.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
5)	On the data list screen, press $[\blacktriangle]/[\nabla]$ to select the data field into which data is to be input (select the speed). Press $[_]$ to define the data field into which data is to be input (define the speed).	1 SpeedBlock ▲ → Speed 2000.0 Acc 20000 Dec 20000 ▼
6)	On the input screen, press [3] [0] [0] [0] on the ten-key pad to enter the speed (for 3000r/min). Press [] to write the speed and press [CAN] to proceed to step 7).	1 Ref.Speed ▲ 2000.0 3000.0 Write: ↓ r/min ▼
7)	On the data list screen, press $[\blacktriangle]/[\nabla]$ to select the data field into which data is to be input (select the acceleration time constant). Press $[_]$ to define the data field into which data is to be input (define the acceleration time constant).	1 SpeedBlock ▲ Speed3000.0 → Acc 20000 Dec 20000 ▼
8)	On the input screen, press [1] [^A 4] [^B 5] [^C 6] [^D 7] on the ten-key pad to enter the acceleration time constant (for 14567m). Press [₄] to write the acceleration time constant and press [CAN] to proceed to step 9).	1 Acc time ▲ 20000 14567 Write: ▲ msec ▼
9)	On the data list screen, press $[\blacktriangle]/[\lor]$ to select the data field into which data is to be input (select the deceleration time constant). Press $[_]$ to define the data field into which data is to be input (define the deceleration time constant).	1 SpeedBlock ▲ Speed 3000.0 Acc 14567 →Dec 10000 ▼
10)	On the input screen, press [1] [^A 4] [^B 5] [^C 6] [^D 7] on the ten-key pad to enter the deceleration time constant (for 14567m). Press [$_{4}$] to write the deceleration time constant. Speed block input complete. Press [CAN] twice to return to step 4).	1 Dec time ▲ 10000 14567 Write:₄ msec ▼
11)	If the key pressed is wrong, press [STOP/RESET] to return to the input screen, or press [CAN] to return to the data list screen.	1 Dec time 20000 99999 Error :RST ▼

(3) Data copy

This function reads the point table data (position blocks, speed blocks) of the servo amplifier to the parameter unit and then copied to the other servo amplifier.

(a) Data read

Reads data from the servo amplifier to the parameter unit.

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (Call the data setting screen). Press [SHIFT] [3] (position data copy initial screen). Press [CAN] to return to the previous screen.	<set mode=""> → Pos. Block Speed Block Edit :HELP ▼</set>
2)	Press [▲]/[▼] to specify the mode (specify READ). Press [₄]] to define the mode. If the key press is wrong, press [STOP/RESET] or [CAN] to return to step 1).	<pre><data copy=""> ▲</data></pre>
3)	Read complete Press [CAN] to return to step 1).	<data copy=""> COMPLETE Mode sel.:CAN</data>

(b) Data verify

Verifies the data in the parameter unit with that in the servo amplifier.

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (Call the data setting screen). Press [SHIFT] [3] (position data copy initial screen). Press [CAN] to return to the previous screen.	<set mode=""> ▲ →Pos. Block Speed Block Edit :HELP ▼</set>
2)	Press [▲]/[▼] to specify the mode (specify COMPARE). Press [_↓] to define the mode.	<data copy=""> → READ WRITE COMPARE </data>
3)	Verify complete Press [CAN] to return to step 1).	< DATA COPY > COMPLETE Mode sel.: CAN
4)	When incorrect data exists in the data verified Press [SHIFT] to check incorrect data numbers. When incorrect data overflows a single screen, press [▲]/[♥] to switch to the preceding/next screen. Press [CAN] to return to step 1).	<data copy=""> Compare Er. Error No. :SFT Mode sel.:CAN Er.Data No. P010P P010S P050M P185M P185S S002V ▼</data>

Error number make-up

	Dat	a item		
Block number	F	Position block		Speed block
Biook number	Ρ	Position	V	Speed
	М	M code	А	Acceleration
Data block identification				time constant
P: Position block	S	Speed number	D	Deceleration
S: Speed block				time constant
			S	S-shape time
				constant

(c) Data write

Writes the data in the parameter unit to the servo amplifier.

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (Call the data setting screen). Press [SHIFT] [3] (position data copy initial screen). Press [CAN] to return to the previous screen.	<set mode=""> ▲ →Pos. Block Speed Block Edit :HELP ▼</set>
2)	Press $[\blacktriangle]/[\nabla]$ to specify the mode (specify WRITE). Press $[_]$ to define the mode (define WRITE).	<datacopy> ▲ →READ WRITE COMPARE ▼</datacopy>
3)	When write is inhibited Press [CAN] to return to step 1).	<pre><data copy=""> Write Inhibit SON ALM Press "CAN"</data></pre>
4)	Press [,] to execute write. Press [STOP/RESET] to step write and return to step 1).	<data copy=""> Write ? Yes: J No:RST <data copy=""> Writeing Not Power Off</data></data>
5)	Write complete Press [CAN] to return to step 1).	<data copy=""> COMPLETE →Power Off</data>
6)	When incorrect data exists in the data written 1. Press [↓] to write only the correct data. 2. Press [STOP/RESET] to stop write and return to step 1). 3. Press [SHIFT] to check incorrect data numbers. When incorrect data overflows a single screen, [▲]/[▼] to switch to [SHIFT] the preceding/next screen.	ErrorNo.:SFT Right Data Write Yes: No:RST Wrong Data P000P P001P S001V S001A S101D S002V ▼

Error number make-up

	Dat	a item		
Block number		Position block		Speed block
Data block identification	P	Position	V	Speed
P: Position block	М	M code	А	Acceleration
S: Speed block				time constant
	S	Speed number	D	Deceleration
				time constant
			S	S-shape time
				constant

(4) Point table data edition

(a) Position block data insertion

Inserts data into the specified position block on a block basis.

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA]. Press [HELP] (position block edition initial screen). Press [CAN] to return to the previous screen.	<set mode=""> ▲ →Pos. Block Speed Block Edit :HELP ▼</set>
2)	Press $[\blacktriangle]/[\nabla]$ to specify the mode (specify INSERT). Press $[_]$ to define the mode (define INSERT).	<pos. edit=""> ▲ → INSERT DELETE ▼</pos.>
3)	Press [0] on the ten-key pad to specify the block number into which data is to be inserted (for No.0). Press $[\{\P}]$ to execute insertion.	<block ins.=""> Block No. Ves: No:RST</block>
4)	During insertion Data in block No.0 is shifted to No.1 and No.0 is vacated. On completion of insertion, the positioning address list screen is displayed.	<block ins.=""> Inserting Not Power Off 0→ 0.0 ▲ 1 78901.2</block>
5)	When insertion cannot be performed (outside the block number setting range) Press [STOP/RESET] to return to step 3).	<block ins.=""> Block No. 2 Error:RST</block>
6)	When the data of the last block will be deleted by executing insertion Press [STOP/RESET] to return to step 3). Press [] to execute insertion.	<block ins.=""> No. 1 Delete Yes: No:RST</block>

(b) Position block data deletion

Deletes the position data of the specified position block number.

Step	Parameter unit operation	Parameter unit screen
1)	Press [PARAM/DATA] (Call the data setting screen). Press [HELP] (position block edition initial screen). Press [CAN] to return to the previous screen.	<set mode=""> ▲ →Pos. Block Speed Block Edit :HELP ▼</set>
2)	Press $[\blacktriangle]/[\nabla]$ to specify the mode (specify DELETE). Press $[_]$ to define the mode (define DELETE).	<pos. edit=""> ▲ INSERT →DELETE ▼</pos.>
3)	Press [0] on the ten-key pad to specify the block number from which data is to be deleted (for No.0). Press $[\4]$ to execute deletion	 Block No. Ves: No: RST
4)	During deletion Data in block No.0 is deleted, the data in No.1 is shifted to No.0, and No.1 is vacated. On completion of deletion, the positioning address list screen is displayed.	<block del.=""> Deleting Not Power Off 0→ 3000.0 ▲ 1 0.0</block>
5)	When deletion cannot be performed (outside the block number setting range) Press [STOP/RESET] to return to step 3).	<block del.=""> Block No. 2 Error:RST</block>

6. WIRINGS

 Any person who is involved in wiring should be fully competent to do the work. Before starting wiring, make sure that the voltage is safe in the tester more than 10 minutes after power-off. Otherwise, you may get an electric shock. Ground the servo amplifier and the servo motor securely. Do not attempt to wire the servo amplifier and servo motor until they have been installed. Otherwise, you may get an electric shock. The cables should not be damaged, stressed excessively, loaded heavily, or pinched. Otherwise, you may get an electric shock. 		
 Wire the equipment correctly and securely. Otherwise, the servo motor may misoperate 		
Connect cables to correct terminals to prevent a burst fault etc		
• Ensure that polarity (+, -) is correct. Otherwise, a burst, damage, etc. may occur		
The surge absorbing diode installed to the DC relay designed for control output		
should be fitted in the specified direction. Otherwise, the signal is not output due to		
a fault, disabling the forced stop and other protective circuits.		
Servo amplifier VIN (24VDC) Control output signal RA Servo amplifier VIN (24VDC) Control output signal RA		
 Use a noise filter, etc. to minimize the influence of electromagnetic interference, which may be given to electronic equipment used near the servo amplifier. Do not install a power capacitor, surge suppressor or radio noise filter (FR-BIF patient). 		
• When using the regenerative brake resistor, switch power off with the alarm signal		
Otherwise, a transistor fault or the like may overheat the regenerative brake resistor, causing a fire.		
Do not modify the equipment.		

6.1 Internal connection diagram of servo amplifier

Note. P: Positioning system, R: Roll feeding system

6.2 Interfaces

6.2.1 Common line

The power supply and its common line are shown below.

6.2.2 Detailed description of the interfaces

This section gives the details of the I/O signal interfaces (refer to I/O Division in the table) indicated in Sections 4.3.2 or Sections 5.3.2.

Refer to this section and connect the interfaces with the external equipment.

(1) Digital input interface DI-1

Give a signal with a relay or open collector transistor.

Note: This also applies to the use of the external power supply.

(2) Digital output interface DO-1

A lamp, relay or photocoupler can be driven. Provide a diode (D) for an inductive load, or an inrush current suppressing resister (R) for a lamp load. (Permissible current: 50mA or less, inrush current: 100mA or less)

(a) Inductive load

(b) Lamp load

(3) Manual pulse generator input interface DI-2 The input signal is in the open collector system.(a) Interface side

(b) Input pulse conditions

(4) Encoder pulse output D0-2

- (a) Open collector system 1) Interface example
 - Max. output current 35mA

2) Output signal waveforms Servo motor CCW rotation

(b) Differential driver system

1) Interface example

Max. output current 35mA

2) Output signal waveforms Servo motor CCW rotation

The leading edge of the LZ signal has variation of $\pm 3/8T$.

(5) Analog input

(6) Analog output

6.3 Power line circuit

	 When the servo amplifier has become faulty, switch power off on the servo
Λ	amplifier power side. Continuous flow of a large current may cause a fire.
	 Use the trouble signal to switch power off. Otherwise, a regenerative brake
	transistor fault or the like may overheat the regenerative brake resistor, causing a
	fire.

6.3.1 Connection example

Wire the power supply and main circuit as shown below. A no-fuse breaker (NFB) must be used with the input cables of the power supply.

Design the circuit to ensure that the servo on signal will be turned off as soon as power is switched off on detection of alarm occurrence.

- Note:1. The interface 24VDC power supply (VDD) of the servo amplifier cannot be used. Always prepare a power supply dedicated to electromagnetic brake. The power supply connected to the lead(blue) of the electromagnetic brake should be wired independently of polarity.
 - 2. When the usage is as described in Section 6.5.2(2), do not connected the EMG switch
 - 3. For HA-LH15K2 or more.
 - 4. Configure up a power circuit which will switch off the magnetic contactor after detection of an alarm.
 - 5. Assign to CN1-23 using parameter No. 3 or 66.
 - 6. Refer to Section 14.1.5 when using the external dynamic brake.
 - 7. Refer to Section 14.1.2 to Section 14.1.4 when using the regenerative brake option, brake unit or power return converter.

6.3.2 The explanation of signals

The arrangement and signal layout of the terminal block change with the servo amplifier capacity. Refer to Section 12.1.

Symbol	Signal name	Description		
R • S • T	Main circuit power supply	Main circuit power input terminals Connect a three-phase 200 to 230VAC, 50/60Hz power supply to R, S, T. For MR-H700TN or more, the voltage of 50Hz power supply is 200 to 220V.		
U • V • W	Servo motor output	Servo motor power output terminals Connect to the servo motor power supply terminals (U, V, W).		
R1 • S1	Control circuit power supply Control circuit power supply For MR-H700TN or more, the voltage of 50Hz power supply is 200 to 22			
P•C•D	Regenerative brake	Regenerative brake option connection terminals The MR-H400TN to MR-H700TN are factory-connected with a built-in regenerative brake resistor across P-C. When using the regenerative brake option, brake unit or power retur converter, always connect it after removing the wiring of the built- regenerative brake resistor connected across P-C. For MR-H11KTN or more, always connect the supplied regenerative bral resistor across P-C.		
MS1 • MS2	 MS2 Servo motor fan Servo motor fan power supply terminals Connect to the cooling fan which is built in the HA-LH11K2 to HA servo motors. Provided for the servo amplifier of MR-H11KTN or mor 			
÷	Grounding	Ground terminal Connect this terminal to the protective earth (PE) terminals of the servo motor and control box for grounding.		

6.3.3 Power-on sequence

(1) Power-on procedure

- 1) Always wire the power supply as shown in Section 6.3.1 using the magnetic contactor with the main circuit power supply. Configure up an external sequence to switch off the magnetic contactor as soon as an alarm occurs.
- 2) Switch on the control circuit power supply R1,S1 simultaneously with the main circuit power supply or before switching on the main circuit power supply. If the main circuit power supply is not on, the display shows the corresponding warning. However, by switching on the main circuit power supply, the warning disappears and the servo amplifier will operate properly.
- 3) The servo amplifier can accept the servo-on signal (RY0) about 1 second after the main circuit power supply is switched on. Therefore, when RY0 is turned to "1" (ON) as soon as the three-phase power supply is switched on, the base circuit will switch on in about 1 second, and the ready signal (RX0) will turn to "1" (ON) in further about 20ms, making the servo amplifier ready to operate.

(2) Timing chart

(3) Forced stop

CAUTION • To stop operation and switch power off immediately, provide an external forced stop circuit.

Make up a circuit which shuts off main circuit power as soon as EMG-SG are opened at a forced stop. By disconnecting EMG-SG, the dynamic brake is operated to bring the servo motor to a sudden stop. At this time, the display shows the servo forced stop warning (AL.E6).

During ordinary operation, do not use the external forced stop signal to alternate stop and run. If the start signal turns to "1" (ON) or a pulse train is input during a forced stop, the servo motor will start rotating as soon as the warning is deactivated. During a forced stop, always shut off the run command.

6.4 Connection of servo amplifier and servo motor

6.4.1 Connection instructions

	 Insulate the connections of the power supply terminals to prevent an electric shock.
-	
	 Connect the wires to the correct phase terminals (U, V, W) of the servo amplifier and servo motor. Otherwise, the servo motor will operate improperly. Do not connect AC power supply directly to the servo motor. Otherwise, a fault may occur.

The connection method differs according to the series and capacity of the servo motor and whether or not the servo motor has the electromagnetic brake.

(1) Wind an insulation tape around the connection several times. For the EN Standard-compliant model, connect via a fixed terminal block.

- (2) For grounding, connect the earth cable of the servo motor to the ground terminal of the servo amplifier and connect the ground cable of the servo amplifier to the earth via earth plate of the control box.
- (3) Supply the exclusive 24VDC power supply to the brake lead of the servo motor with electromagnetic brake.
- 6.4.2 Connection diagram with the servo motor

The following table lists wiring methods according to the servo motor types. Use the connection diagram which conforms to the servo motor used. For cables required for wiring, refer to Section 14.2.1. For encoder cable connection, refer to Section 14.1.6.

For the signal layouts of the connectors, refer to Section 4.3.1.

For the servo motor connectors, refer to Chapter 3 in the Servo Motor Instruction Manual.

6. WIRINGS

Servo motor	Connection diagram			
	Servo amplifier (Note 4) Servo motor			
	U (Red)			
	V V (White)			
	W (Black) (Motor)			
	- 24VDC B1 (Note 2)			
	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{A} \begin{bmatrix} 1 \\ 2 \end{bmatrix}_{A} $			
HA-LHIIK $(0 22K2)$ HC ME053 (B) (UE) to	EMG magnetic To be shut off when some brake			
73 (B) (-UE)	on signal switches off or by			
HA-FF053 (B) to 63 (B)				
HC-UF13 (B) to 73 (B)				
	Encoder cable			
	Note 1. To prevent an electric shock, always connect the earth terminal of the			
	servo amplifier to the earth of the control box.			
	 This circuit applies to the serve motor with electromagnetic brake. The HA-FF series has no lead wires. 			
	For the HA-FF series, connect the ground cable to the earth terminal of the			
	servo motor.			
	 The HA-LH11K2 to LH22K2 are equipped with a cooling fan. For wiring, refer to Section 3.8.4. 			
	Servo amplifier Servo motor			
	W (Motor)			
	(Note 1)			
HA-FF053C (B)-UE to 63C (B)-UE				
HC-SF121 (B) to 301 (B)				
HC-SF202 (B) to 702 (B)				
HC-SF203 (B) • 353 (B)	To be shut off when servo brake			
HC-UF202 (B) to 502(B)	alarm signal			
	Encoder cable			
	Note 1. To prevent an electric shock, always connect the earth terminal of the			
	servo amplifier to the earth of the control box.			
	2. This circuit applies to the servo motor with electromagnetic brake.			
	Servo amplifier Servo motor			
	V Motor			
	(Note 1)			
HC-SF52 (B) to 152 (R)				
HC-SF53 (B) to 152 (B)	\Box			
HC-RF103 (B) to 503 (B)	EMG brake			
HC-UF72 (B) - 152 (B)	on signal switches off or by			
	CN2 CN2			
	Encoder cable			
	Note 1. To prevent an electric shock, always connect the earth terminal of the			
	servo amplifier to the earth of the control box.			
	I his circuit applies to the servo motor with electromagnetic brake.			

6.4.3 Details of the servo motor side

Encoder connector signal arrangement

1	2	3	
MR	MRR	BAT	
4	5	6	
MD	MDR		
7	8	9	
P5	LG	SHD	

(2) HA-FF (B) series

Encoder cable 0.3m (0.984ft.) With connector 172169-9 (AMP make) Power supply cable VCTF3-1.25² 0.5m (1.639ft.) With end-insulated round crimping terminal 1.25-4 Red : U phase White : V phase Black : W phase Brake cable VCTF2-0.5² 0.5m (1.639ft.) With end-insulated round crimping terminal 1.25-4

Encoder connector signal arrangement

	7 [
1	2	3
MR	MRR	BAT
4	5	6
MD	MDR	
7	8	9
P5	LG	SHD

(3) HA-FF □ C(B)–UE series

	Connector			
Servo motor	For power supply	For encoder	For brake	
HA-FF053C(B)-UE				
to	CE05-2A14S-2PD-B	MS3102A20-29P	MS3102E10SL-4P	
HA-FF63C(B)-UE				

Signal

MD

MDR

MR

MRR

BAT

LG

Pin

Κ

L

Μ

Ν

Ρ

R

S

Т

Signal

SHD

LG

P5

Power supply connector signal arrangement CE05-2A14S-2PD-B

Kev

Pin

А

В

С

D

Е

F

G

Η J

Brake connector signal arrangement MS3102E10SL-4P

BAT

6

g

SHD

(4) HC-UF (B) 3000r/min series

(5) HC-SF (B) • HC-RF (B) • HC-UF (B) 2000 r/min series

	Servo motor side connectors		
Servo motor	For power supply	For encoder	Electromagnetic brake connector
HC-SF81(B) HC-SF52(B) to 152(B) HC-SF53(B) to 153(B)	CE05-2A22-23PD-B		Also used by power supply
HC-SF121(B) to 301(B) HC-SF202(B) to 502(B) HC-SF203(B) • 353(B)	CE05-2A24-10PD-B	MS2102420 20D	MS3102A10SL-4P
HC-SF702(B)	CE05-2A32-17PD-B	MISS102A20-29F	
HC-RF103(B) to 203(B)	CE05-2A22-23PD-B		Also used by
IC-RF353(B) 503(B)	CE05-2A24-10PD-B		power supply
HC-UF72(B) • 152(B)	CE05-2A22-23PD-B	[
HC-UF202(B) to 502(B)	CE05-2A24-10PD-B		MS3102A10SL-4P

Power supply connector signal arrangement CE05-2A22-23PD-B CE05-2A24-10PD-B

polarity

Encoder connector signal arrangement MS3102A20-29P

Pin	Signal	Pin	Signal
Α	MD	Κ	
В	MDR	L	/
С	MR	М	
D	MRR	Ν	SHD
Е		Р	
F	BAD	R	LG
G	LG	S	P5
Н		Т	
J			

Brake connector signal arrangement

MS3102E10SL-4P Kev вО Oa

Pin	Signal	
Α	(Note) B1	
B (Note) B2		
Note: 24VDC without		
polarity		

CE05-2A32-17PD-B

Oa

O сO

Key

σO

Pin	Signal
А	U
В	V
С	W
D	🕀 (Earth)

Note: 24VDC, without polarity

Signal

U

V

W

(Earth)

(Note) B1

(Note) B2

Pin

А

В

С

D

Е

F

G

Key

0 04

EOOOB

(6) HA-LH11K2(-EC) to HA-LH22K2(-EC)

Encoder connector Pin Signal Pin Signa signal arrangement А MD K MS3102A-29P В MDR L С MR Μ Key D MRR Ν SHD Р Е F BAT R LG G LG S P5 Т Η J

(a) Terminal box of HA-LH11K2 to HA-LH22K2

Power supply connection screw size

Servo motor	Power supply connection
	screw size
HA-LH11K2	8-6
HA-LH15K2 22K2	14-6

(b) Terminal box of HA-LH11K2-EC to HA-LH22K2-EC Terminal box

Servo motor	Power supply connection screw size	Fan connection screw size
HA-LH11K2-EC	M6	M4
HA-LH15K2-EC • LH22K2-EC	M8	M4

6.4.4 Servo motor fan (HA-LH11K2 to HA-LH22K2)

The 11kW or more of the HA-LH series are of totally-enclosed, force-cooled type. When performing operation, supply power to the cooling fan terminals (BU, BV) to operate the cooling fan. (Single-phase 200V, 35W)

Connect the fan terminals (BU, BV) of the servo motor to the cooling fan power terminals MS1, MS2 of the servo amplifier.

6.5 Servo motor with electromagnetic brake

• For the power supply capacity and other specifications of the electromagnetic brake, refer to the Servo Motor Instruction Manual.

Use the servo motor with electromagnetic brake to prevent a load drop on a vertical shaft or to ensure double safety at a forced stop. When using the signal of the servo motor with electromagnetic brake as the CN1 external input signal, set " $\Box \Box 1 \Box$ " in parameter No. 3 to assign it to CN1-23.

Refer to the connection diagram in Section 6.3.1 and make connection.

6.5.1 Wiring instructions

- (1) Do not share the 24VDC interface power supply between the interface and electromagnetic brake. Always use the power supply designed exclusively for the electromagnetic brake.
- (2) The brake will operate when the power (24VDC) switches off.
- (3) The electromagnetic brake has no polarity. When connecting the power supply, wire it independently of polarity.
- (4) Turn off the servo on signal after the servo motor has stopped.

6.5.2 Operation of electromagnetic brake

- (1) Electromagnetic brake operates when alarm occurs, forced stop is valid, or RY0 signal is off
 - (a) Setting

Set " $0 \square \square \square$ " (initial value) in parameter No. 44.

(b) Timing chart

- (2) Electromagnetic brake operates under the condition in (1) of this section and at zero speed(a) Setting
 - 1) Set "1 $\Box \Box \Box$ " in parameter No. 44 to change the electromagnetic brake interlock output timing.
 - 2) Using parameter No. 3 (servo type), change the function of CN1-23 pin from the trouble signal to the electromagnetic brake signal.
 - 3) In parameter No. 53 (electromagnetic brake sequence output), set a time delay (Tb) between electromagnetic brake operation and base circuit shut-off as shown in the timing chart on the next page.
 - 4) In this usage, do not install the EMG switch in Note 2 in the connection diagram of Section 6.3.1.

(b) Timing chart

1) Servo ON, reset timing chart.

2) Alarm occurrence or forced stop validity timing chart.

Alarm occurrence or forced stop validity

6.6 Grounding

WARNING • Ground the servo amplifier and servo motor securely.

The servo amplifier switches the power transistor on-off to supply power to the servo motor. Depending on the wiring and ground cablerouting, the servo amplifier may be affected by the switching noise (due to di/dt and dv/dt) of the transistor. To prevent such a fault, refer to the following diagram for grounding. To conform to the EMC Directive, refer to the EMC INSTALLATION GUIDELINES (IB(NA)67310).

6.7 Alarm occurrence timing chart

^	When an alarm has occurred, remove its cause, make sure that the operation
	signal is not being input, ensure safety, and reset the alarm before restarting
	operation.

When an alarm occurs in the servo amplifier, the base circuit is shut off and the dynamic brake operates to stop the servo motor. At the same time, switch off the main circuit power supply in the external sequence. To reset the alarm, switch the control circuit power supply off, then on or turn the reset signal (RY1A or RY3A) off, then on. However, the alarm cannot be reset unless its cause is removed.

Precautions for alarm occurrence

(1) Overcurrent, overload 1 or overload 2

If operation is repeated by switching control circuit power off, then on to reset the overcurrent (AL.32), overload 1 (AL.50) or overload 2 (AL.51) alarm after its occurrence, without removing its cause, the servo amplifier and servo motor may become faulty due to temperature rise. Securely remove the cause of the alarm and also allow about 30 minutes for cooling before resuming operation.

(2) Regenerative alarm

If operation is repeated by switching control circuit power off, then on to reset the regenerative (AL.30) alarm after its occurrence, the external regenerative brake resistor will generate heat, resulting in an accident.

(3) Instantaneous power failure

If a power failure continues 15ms or longer, the undervoltage (AL.10) alarm will occur. If the power failure still persists for 100ms or longer, the control circuit is switched off. If a power failure is restored in this status, the alarm is reset, and the motor will start suddenly if the servo on signal (RY0) is in the state of "1" (ON). To prevent a hazard, configure up the sequence to ensure that the servo on signal (RY0) will turn to "0" (OFF) when an alarm occurs.

(4) Incremental system

When an alarm occurs, the home position is lost. When resuming operation after deactivating the alarm, make a return to home position.

CAUTION • Never adjust or change the parameter values extremely as it will make operation instable.

7.1 Parameter list

7.1.1 Parameter write inhibit

In this servo amplifier, its parameters are classified into the basic parameters (No.0 to 20) and expansion parameters (No.21 to 64) and option parameters (No.65 to 79) according to their safety aspects and frequencies of use. In the factory setting condition, the customer can change the basic parameter values but cannot change the expansion parameter values. When fine adjustment, e.g. gain adjustment, is required, change the parameter No.20 setting to make the expansion parameters write-enabled. Parameter No.20 is made valid by setting its value and then switching power off, then on.

The following table lists the parameters that are enabled for reference and write by setting of parameter No. 19. Operation can be performed for the parameters marked \bigcirc .

Parameter No.20 setting	Operation	Parameters No.0 to No.20	Parameters No.21 to No.64	Parameters No.65 to No.79
	Reference	0		0
(initial value)	Write	0		0
	Reference	No.20 only		
	Write	No.20 only		
	Reference	0	0	0
	Write	0		
	Reference	0	0	0
	Write	0	Ō	0

7.1.2 Lists

POINT

- For any parameter whose symbol is preceded by *, set the parameter value and switch power off once, then switch on again to make that parameter setting valid.
- When using the HC-MF, HA-FF, HC-SF, HC-RF or HC-UF series servo motor, the values of parameters No. 0 and 1 need not be set. They are automatically judged by simply connecting the servo motor. At this time, the settings of these parameters are ignored.

For details of the parameters, refer to the corresponding items.

The symbols in the Feeding System column of the table denote the following: P: Positioning system

R: Roll feeding system

(1) Item list

classif-	No	Codo	Nama	Parameter unit	Feeding	Initial	Lloit	Customer
ication	NO.	Code	Name	screen display	system	value	Unit	setting
STS	0	*MSR	Motor series	0 MTR ser.	P, R			
nete	1	*MTY	Motor type	1 MTR type	P, R			
parar	2	*FTY	Feeding system, regenerative brake option selection	2 Feed mode	P, R	0001		
asic	3	*ST1	Function selection 1	3 Function 1	P, R	0000		
В	4	*ST2	Function selection 2	4 Function 2	P, R	0000		
	5	*CMX	Electronic gear numerator	5 E-gear-N	P, R	1		
	6	*CDV	Electronic gear denominator	6 E-gear-D	P, R	1		
	7	PG1	Position control gain 1	7 Pos. gain 1	P, R	70	rad/s	
	8	JG1	Jog speed 1	8 JOG speed 1	P, R	100	r/min	
	0	JG2	Jog speed 2	9 JOG speed 2	R	1000	r/min	
	9	*ZTY	Zeroing type	9 ORG type	Р	0010		
			For manufacturer setting	10 blank	R	/		
	10	ZSP	Zeroing position	10 ORG Add	Р	0	Command unit $\times 10^{\text{STM}} \times 10^{-3}$	
		/	For manufacturer setting	11 blank	R	/		
	11	ZRF	Zeroing speed	11 ORG Speed	Р	500	r/min	
	10		For manufacturer setting	12 blank	R			
	12	CRF	Creep speed	12 ORG Creep	Р	10	r/min	
	10		For manufacturer setting	13 blank	R			
	13	ZST	Zero shift distance	13 ORG shift	Р	0	Command unit	
			For manufacturer setting	14 blank	R	/		
	14	DCT	Moving distance after proximity dog signal ON	14 Near Dog	Р	1000	Command unit $\times 10^{\text{STM}} \times 10^{-3}$	
		/	For manufacturer setting	15 blank	R			
	15	STN	Second home position data	15 ORG Add. 2	Р	100	Command unit $\times 10^{\text{STM}} \times 10^{-3}$	
	16	INP	In-position range	16 IPN zone	P, R	25	Command unit	
	17	CRP	Rough match output range	17 CRP zone	P, R	0	$ imes 10^{\text{STM}} imes 10^{-3}$	
	18	MOD	Analog monitor output	18 Moni. sel.	P, R	0001		
	19	DMD	Status display selection	19 Disp. sel.	P, R	0000		
	20	*BLK	Parameter/point table write inhibit	20 Pr. block	P, R	0000		
srs	21	AUT	Auto tuning	21 AT Tuning	P, R	0001		
nete	22	*OP1	Function selection 3	22 Function 3	P, R	0000		
ran	23	*OP2	Function selection 4	23 Function 4	P, R	0000		
ı pa	24	*OP3	Function selection 5	24 Function 5	P, R	0000		
sior	25	BKC	Backlash compensation	25 Backlash	P, R	0	pulse	
pan	26	FFC	Feed forward gain	26 FF gain	P, R	0	%	
Ex	27	ERZ	Excessive error alarm level	27 AL.52 level	P, R	80	K pulse	
	28	INT	In-position output time	28 INP time	P, R	0	ms	
	29	*RMX	For manufacturer setting	29 Puls Func 1	P, R	0120		
	30	RM2	Pulse input function 2	30 Puls Func 2	P, R	0000		
	21	*DSP	Current position display	31 Pos Disply	R	0000		
	31		For manufacturer setting	31 blank	Р	/		/
	32	\geq	For manufacturer setting	32 blank		/		
	33	\geq	For manufacturer setting	33 blank		\square		
	34		For manufacturer setting	34 blank				
	35		For manufacturer setting	35 blank				

classif-	No	Codo	Nome	Parameter unit	Feeding	Initial	Linit	Customer
ication	INO.	Code	Name	screen display	system	value	Unit	setting
ers	36	/	For manufacturer setting	36 blank	/	/		
nete	37		For manufacturer setting	37 blank				
ırar	38		For manufacturer setting	38 blank				
ı pa	39	*ENR	Encoder output pulse	39 PLG pulse	P, R	2048	pulse	
sio	40	TL	Internal torque limit 1	40 TQ limit 1	P, R	100	%	
Expan	41	*IP1	Input signal selection 1	41 DI sel. 1	P, R	P : 0100 R : 0000		
	42	*IP2	Input signal selection 2	42 DI sel. 2	P, R	0000		
	43		For manufacturer setting	43 blank		/		
	44	*OPC	Output signal selection	44 DO sel.	P, R	0000		
	45		For manufacturer setting	45 blank				
	46	*MOA	Pre-alarm data selection	46 ALM memo	P, R	0001		
	47	VOC	VC offset	47 VC offset	P, R	0	mV	
	48	TPO	TLAP offset	48 TLAP offset	P, R	0	mV	
	49		For manufacturer setting	49 blank		/		/
	50	MO1	MO1 offset	50 MO1 offset	P, R	0	mV	
	51	MO2	MO2 offset	51 MO2 offset	P, R	0	mV	
	52	*SIO	External digital display selection	52 SIO sel.	P, R	0101		
	53	MBR	Electromagnetic brake sequence output	53 BRK timing	P, R	100	ms	
	54	TL2	Internal torque limit value 2	54 TQ limit 2	P, R	100	%	
	55	/	For manufacturer setting	55 blank	\sim	0		
	56	\backslash	For manufacturer setting	56 blank	\sim	0		\sim
	57	/	For manufacturer setting	57 PID droop	\sim	0		\sim
	58	DG2	Ratio of load inertia moment to servo motor inertia moment	58 Inertia	P, R	2.0	times	
	59	NCH	Machine resonance control filter	59 M-filter	P, R	0		
	60	PG2	Position control gain 2	60 Pos. gain 2	P, R	25	rad/s	
	61	VG1	Speed control gain 1	61 V-gain 1	P, R	1200	rad/s	
	62	VG2	Speed control gain 2	62 V-gain 2	P, R	600	rad/s	
	63	VIC	Speed integral compensation	63 V-int com	P, R	20	ms	
	64	VDC	Speed differential compensation	64 V-dif com	P, R	980		
ers	65	*COM	Command system selection	65 com.sel	P, R	1000		
nete	66	*DIS	External DI selection	66 DI sel.	P, R	0000		
uran	67	/	For Manufacturer setting	67 LS DI sel	/	0000		/
ı pa	68	/	For manufacturer setting	68 blank	/	0120		/
tion	69	/	For manufacturer setting	69 blank				
op	70	/	For manufacturer setting	70 blank	/	/		/
	71	/	For manufacturer setting	71 blank	/	/		
	72	/	For manufacturer setting	72 blank	/	/		/
	73	/	For manufacturer setting	73 blank				
	74		For manufacturer setting	74 blank				
	75		For manufacturer setting	75 blank				
	76		For manufacturer setting	76 blank				
	77		For manufacturer setting	77 blank	/			
	78		For manufacturer setting	78 blank				
	79	/	For manufacturer setting	79 blank	\sim	/		//

(2) Detail List

classif- ication	No.	Code		Na	ame and Function		Feeding system	Initial value	Unit	Setting range
Basic parameters	0	*MSR	Motor series Used to sele When using servo motor automatical and servo a unchanged	ect the series of g the HC-MF, r, the value of lly judged by si mplifier. At this but use it as it i	P, R			0000 to 0005h		
				Set value						
				0000	HA-SH					
				0001	HA-LH					
				0002	HA-UH					
				0003	HA-FH					
				0005	HA-MH					
	1	*MTY	Motor type Set the para used. When using servo motor automatical and servo a unchanged	ameter (servo m g the HC-MF, r, the value of t lly judged by si mplifier. At this but use it as it i → Rated output (u Indica	HA-MH notor capacity) according to the HA-FF, HC-SF, HC-RF or H this parameter need not be s imply connecting the servo m is time, the value of this param s. Rated speed (unit: 1000 nit/100W)	e servo motor IC-UF series et since it is notor encoder neter remains				

classif-	No.	Code				N	ame	and	l Fu	nctic	on							Feeding	Initial	Unit	Setting
ication																		system	value		range
ters	1	*MTY							_					1				P, R	able		able
me					Canacity		1		Serv	'o am	plifie	r MR	-H L	TN	1				ft ta		ft ta
ara				Servo motor	(W)	10	20	40	60	100	200	350	500	700	11K	15K	22K		Lei		Lei
c bi			ct	HA-MH053	50		053												the		the
asi			mpa	HA-MH13	100		13												in t		in t
В			raco	HA-MH23	200			23	49										en		en
			CIF	HA-MH43	400				43	73									giv		giv
					50	053	1			13									As		As
			ħ	HA-FH13	100	13															
			pacit	HA-FH23	200	15	23														
			ll ca	HA-FH33	300		20	33													
			Sma	HA-FH43	400			43													
			•.	HA-FH63	600			10	63												
			-	HA-SH81	850					81											
			/min	HA-SH121	1200						121										
			000r	HA-SH201	2000						201										
			1	HA-SH301	3000							301									
				HA-SH52	500				52												
				HA-SH102	1000					102											
			min	HA-SH152	1500						152										
			00r/1	HA-SH202	2000						202										
			200	HA-SH352	3500							352									
				HA-SH502	5000								502								
				HA-SH702	7000									702							
			_	HA-SH53	500				53												
			/min	HA-SH103	1000					103											
			1000 u	HA-SH153	1500						153										
			3(HA-SH203	2000						203	252									
				HA-SH355	500				59			303									
				HA-LH5Z	500				52	-	109										
			ia	HA-LH102	1500						152	-									
			nert	HA-LH102	2000						152	202									
			ow i	HA-LH302	3000							202	302								
				HA-LH502	5000								502								
				HA-LH702	7000									702							
			Ŷ	HA-	11000										1109						
			capacit	LH11K2 HA-	15000										1102	1502					
			Large	LH15K2 HA-	22000												2202				
				HA-UH32	300			32													
				HA-UH52	500			02	52												
			e	HA-UH102	1000				02		102										
			ncak	HA-UH152	1500						152										
			Pai	HA-UH222	2200							222									
				HA-UH352	3500								352								
				HA-UH452	4500								452								
			The y	values enclo	sed bv □	are	fact	torv	-set	valı	ies.										
							• 7	The	ра	ram	nete	er va	alue	es g	jive	n in					
							t	he f	follc	wir	na t	able	e in	dica	ate	tha	·				
									0110		ig t	-1:				una	-				
							t	ne	corr	resp	oon	ain	g se	ervo)						
				∕I∖CAl	JTION		а	mp	lifie	ers a	and	se	rvo	mo	otors	5		1			
							n	nav	be	us	ed t	toge	ethe	er. I	f th	е					
							C	othe	er va	alue	e is	set	. a t	fire	ma	v					
							t	ake			0	201	, a 1			,					
								anc		.00.									1		

classif- ication	No.	Code	Name and Function	Feeding system	Initial value	Unit	Setting range
Basic parameters	2	*STY	Feeding system, regenerative brake option selection Used to select the feeding system and regenerative brake option.	P, R	value 0001		range 0000 to 0E32h
	3	*ST1	Function selection 1 Used to choose the optional functions.	P, R	0000		0000 to 1111h

classif- ication	No.	Code	Name and Function	Feeding system	Initial value	Unit	Setting range
Basic parameters	4	*ST2	Function selection 2 Used to choose the optional functions. Image: Colspan="2">O Image: Colspan="2">The magnification (STM) can be set to position data set in the position block number or by the digital switch. Refer to the following table. Image: Colspan="2">Set value (STM) Image: Colspan="2">O 1 Image: Colspan="2">O 1 Image: Colspan="2">O 1 Image: Colspan="2">O 1 Image: Colspan="2">O 1 Image: Colspan="2">O 1 Image: Colspan="2"O 1 Image: Colspan="2"O 1 <td>P, R</td> <td>0000</td> <td></td> <td>0000 to 0413h</td>	P, R	0000		0000 to 0413h
	5	*CMX	Electronic gear numerator Set the value of the electronic gear numerator. Refer to Section 7.2.1 for setting.	P, R	1	Pulse	1 to 50000
	6	*CDV	Electronic gear denominator Set the value of the electronic gear denominator. Refer to Section 7.2.1 for setting.	P, R	1	Com- mand unit	1 to 50000

classif-	No.	Code	Name and Function	Feeding	Initial	Unit	Setting
ication s	7	PC1	Position control gain 1	DD	70	rad/s	10 to
eter	'	rui	Used to set the gain of the position loop	Γ, Κ	70	Tau/S	1010
amo			Increase the gain to raise tracking performance in response to the				1000
par			position command.				
sic	8	JG1	JOG speed 1	P. R	100	r/min	0 to
Ba	-		Used to set speed 1 of the JOG speed command.	_ ,			max.
			The acceleration and deceleration time constants used are those of				speed
			speed block No. 1				•
	9	*ZTY	Zeroing type	Р	0010		0000
			Select the home position setting method, zeroing direction and			\setminus	to
			proximity dog signal input polarity.			\setminus	0114h
						\backslash	
			\top \top \top \top				
			→ Home position setting type				
			1: Count type (front end detection)				
			2: Data setting type				
			3: Stopper type 4: Servo on position home position				
			Zeroing direction (home position ignored)				
			0: Address increasing direction				
			1: Address decreasing direction			\	
			0: Dog signal ON when open (0)			\	
			1: Dog signal ON when closed (1)				
		JG2	JOG speed 2	R	1000	r/min	0 to
			Used to set speed 2 of the JOG speed command.				max.
							speed
	10	ZPS	Zeroing position data	Р	0	Com-	-32765
			Used to set the current position reached on completion of zeroing.			unit	to
			The actual zeroing position data is 10^{STM} times greater that the set			× 10STM	32767
			value.			×10-3	
	11	ZRF	Zeroing speed	Р	500	r/min	0 to
			Used to set the servo motor speed for zeroing.				max.
							speed
	12	CRF	Creep speed	Р	10	r/min	0 to
			Used to set the creep speed after proximity dog detection.				max.
		-					speed
	13	ZST	Zero shift distance	Р	0	Com-	0 to
			Used to set the shifting distance from the Z-phase pulse detection			mand	65535
	14	DOT	position in the encoder.	D	1000	Com-	0.1
	14	DCI	Moving distance after proximity dog signal ON	Р	1000	mand	0 to
			for count type zeroing			unit	00000
			Set the value not less than the distance required to decelerate from			10 ^{STM}	
			the zeroing speed.			×10-3	
	15	STN	Second home position data	Р	0	Com-	-32768
	-		Used to set the current position reached when automatic zeroing is			mand	to
			performed to return to the second home position. The actual second			\times	32767
			home position data is 10^{STM} times greater that the set value.			10 ^{STM}	
	10	IND	In position range	סק	95	× 10-3	0 to
	10	INP	II-pusition range Used to set the droop pulse range when the in position signal is	г, к	20	puise	50000
			output				50000
			1 · · · · · · · · · · · · · · · · · · ·				

classif- ication	No.	Code	Name and Function	Feeding system	Initial value	Unit	Setting range
Basic parameters	17	CRP	Rough match output range Used to set the command distance range in which the rough match output is provided.	P, R	0	Com- mand unit × 10 ^{STM} × 10-3	0 to 50000
	18	MOD	Analog monitor output Used to set the signal provided to the analog monitor output. (Refer to Section 7.2.3.) OOO Monitor 2 output selection 0: Motor speed (±8V/maximum speed) 1: Torque (±8V/maximum torque) (Note) 2: motor speed (+8V/maximum torque) (Note) 3: Torque (+8V/maximum torque) (Note) 4: Current command output 5: Speed command (±8V/maximum speed) 6: Droop pulse value 1/1 (±11.6V/2048 pulses) 7: Droop pulse value 1/4 (±11.6V/32768 pulses) 8: Droop pulse value 1/4 (±11.6V/32768 pulses) 9: Droop pulse value 1/64 (±11.6V/131072 pulses) Monitor 1 output selection Items are the same as in monitor 2 output selection. Note: 8V is output at the maximum torque. But 8V is output at the torque controlled by Parameter No.40.	P, R	0001		0000 to 0A0Ah
	19	DMD	Status display selection Used to choose the status display provided at power-on. O O Servo amplifier display/external display (Valid when rotary switch CS1 is 0) The items are the same as in parameter unit status display at power-on. However, you cannot set F (bus voltage). The display is overridden by the setting of the rotary switch on the servo amplifier. When the rotary switch setting is "0", parameter No. 19 is made valid. (Refer to Section 8.5.) Parameter unit status display at power-on 0: Current position 8: Torque limit command voltage 1: Command position 9: Regenerative load factor 2: Command remaining distance A: Effective load factor 3: Override B: Peak load factor 4: Position block number C: Within-1-revolution position 5: Feedback pulse value D: ABS counter 6: Machine speed E: Servo motor speed 7: Droop pulse F: Bus voltage	P, R	0000		0000 to 00FEh

classif- ication	No.	Code				Nam		Feeding system	Initial value	Unit	Setting range		
ic parameters	20	*BLK	Paramet Used to Operat	ter/po o limit ion ca	int table t write o in be per	e write inh f the para formed fo	nibit nmeter values or the parame	ole data. O.	P, R	0000		0000 to 0E0Eh	
Bas				Τ_		Parar	neter write is lin						
					Set value	Operation	Parameters No.0 to No.20	Parameters No.65 to No.79					
						Reference	0		0				
					0	Write	0		0				
						Reference	No.20 only						
					A	Write	No.20 only						
						Reference	0	0	\circ				
					С	Write	Õ		\sim				
						Reference	0	\circ	\bigcirc				
					E	Write	0	0	0				
				L∍ V fe	Vhen usin eeding sys	g the large stem, the po	setting/display u pint table data is Data	unit (MR-PRU02) protected.) in the roll	R			
				Ş	Set value	Position da	ata Speed	Accele deceleration	eration/ time constant				
					0	0	0	(\supset				
				Γ	А								
				F	В	0	0		\supset				
				F	С	/)				
				F	D	/							
				F	Е	0							
				-									

(2) Extension parameters

classif- ication	No.	Code			Name	e and Function			Feeding system	Initial value	Unit	Setting range
Extension parameters	21	AUT	Auto tunin Used to function. Refer to	ng set th Chapte	e response, o r 9. O Response s Optimum res of the machi response ca response to	Auto tuning select 0: Auto tuning se axis control, et 1: Auto tuning for 2: No auto tuning etting (when auto sponse can be se ine. As the machin in be set to improv a command and	on lected for use of ordinary opera (invalid) tuning is valid) ected accordin he has higher r re tracking perf o reduce settir	auto tuning of interpolation ontrol (valid) ation (valid) g to the rigidity gidity, faster ormance in g time.	P, R	0001		0000 to 0C02h
			Machine type	Setting	Response	Description Guideline for corresponding machine rigidity	GDL ² /GDM ² guideline for load inertia	Guideline for position setting time GDL ² /GDM ² guideline = within 5 times				
			Initial value	0	Low response	Low to high rigidity	1 to 5 times	unies				
			Normal	1 2 3	Low response Middle response	Low rigidity to Middle rigidity	1 to 10 times	50 to 300ms 10 to 70ms				
			Large	5	High response	High rigidity		10 to 30ms				
			friction	9	Low response Middle response	Low rigidity to		10 to 100ms				
				A B C	High response	to High rigidity		10 to 50ms				
			When ch servo mo their sto with the	anging otor and p and a slower	the set value, d machine im always increas response.	look at the vil mediately befo se the set valu	pration and s re they stop e in sequence	setting of the o and during ce, beginning				
	22	*OP1	Function s	selectio select th	n 3 ne optional fun	ction.			P, R	0000		0000 to
			0	0 (Low acoustic-noi By selecting the I generated by the (Refer to Section At this time, the co (Refer to Section 0: Non-low acoustic 3: Low acoustic	se mode selection low acoustic-noise servo motor can 6.2.6.) continuous output 13.1.) ustic-noise -noise mode is se	n e mode, electro be reduced app of the servo mo lected.	magnetic noise prox. 20dB. ptor reduces.				0003h

classif- ication	No.	Code	Name and Function	Feeding system	Initial value	Unit	Setting range
1 parameters	23	*OP2	Function selection 4 Used to choose the stopping method when the forward rotation stroke end (RY4)/reverse rotation stroke end (RY5) is valid.	P, R	0000		0000 to 1011h
Extensior			UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU				
	24	*OP3	Function selection 5 Used to choose the input filter and override. O Override 0: Invalid 1: Valid External input signal filter 0: Without filter 1: 3.55 [msec] Used to protect the external relay contact 2: 7.11 [msec] input from chattering, noise entry, etc.	P, R	0000		0000 to 1211h
	25	BKC	Backlash compensation Used to set the backlash compensated for when the command direction is reversed.	P, R	0	pulse	0 to 10000
	26	FFC	Feed forward gain Used to set the feed forward gain for position control. Set 100% to zero the droop pulse value when operation is performed at constant speed. Note that sudden acceleration/deceleration will increase overshoot. (As a guideline, acceleration/deceleration time up to the rated speed is 1s or longer at the FFC of 100.) When this parameter is set, parameter No.21 must be set to disable	P, R	0	%	0 to 100
	27	ERZ	auto tuning. Excessive error alarm level Used to set the range in which the excessive droop alarm is provided	P, R	80	k pulse	1 to 1000
	28	INT	In-position output time Set the length of time when the in-position signal is kept output. Set "0" to keep outputting the signal during positioning.	P, R	0	ms	0 to 50000
	29		For manufacturer setting Must not be changed.		0120	$\overline{\ }$	
	30	RM2	Pulse input function 2 Used to set the pulse magnification of the manual pulse generator (MR-HDP01). Setting of "0004" may be used only when 2 stations are occupied. When 1 station is occupied, choosing it will result in a parameter alarm (AL.37). • Manual pulse generator input selection 0: Manual pulse generator input selection 0: Manual pulse generator input invalid 1: 1-time pulses 2: 10-time pulses 3: 100-time pulses 4: Pulse multiplying factor selected with RY13 and RY14.	P, R	0000		0000 to 0004h

7 - 12

classif- ication	No.	Code	Name and Function	Feeding system	Initial value	Unit	Setting range
Extension parameters	31	*DSP	Current position display Used to choose the display function of the current position. OOOO Current position display function selection 0: Currulative display 1: Fixed dimension display	R	0000		0000 to 0001h
	32 33 34 35 36 37 38		For manufacturer setting Must not be changed.				
	39	*ENR	Encoder output pulse Used to set the encoder output pulse per servo motor revolution. The value (pulses/rev) set in this parameter is output independently of the motor type.	P, R	2048	pulse /rev	100 to 50000
	40	TL1	Internal torque limit value 1 Set to define the maximum torque as 100%. When the external analog torque limit is valid, torque is limited at the lower level value of the external and internal torque limit values. When torque monitoring has been selected for monitor output, this set level is 8[V]. The monitored torque of the analog monitor output is 8[V] at max. torque.	P, R	100	%	0 to 100

classif- ication	No.	Code	Name and Function	Feeding system	Initial value	Unit	Setting range
Extension parameters	41	*IP1	Input signal selection 1 Used to select the functions of the input signals. 0 0 0 • Torque limit (RYE) switching function selection 0: 1(ON) The external analog torque limit command is valid. However, the internal torque limit value is valid when the internal torque limit. 0(OFF) The internal torque limit value (parameter No.40) is less than the external torque limit value (parameter No.40) is valid. 1: 1(ON) The internal torque limit value (parameter No.40) is valid. However, the internal torque limit value 2 is always valid when the internal torque limit value 2 is less than the internal torque limit. 0(OFF) The internal torque limit value 2 is less than the internal torque limit.	P	0000		0000 to 0010h
			0 0 0 • Torque limit (RY4) switching function selection 0: 1(ON) The external analog torque limit command is valid. However, the internal torque limit value is valid when the internal torque limit value (parameter No.40) is less than the external torque limit. 0(OFF) The internal torque limit value is valid. 1: 1(ON) The internal torque limit value (parameter No.40) is valid. However, the internal torque limit value 2 is always valid when the internal torque limit value 2 is always valid when the internal torque limit value 2 is less than the internal torque limit. 0(OFF) The internal torque limit value 2 is less than the internal torque limit. 0(OFF) The internal torque limit value 2 is less than the internal torque limit. 0(OFF) The internal torque limit value 2 is less than the internal torque limit.	R	0000		0000 to 0010h

classif-	No	Code	Name and Eurotion	Feeding	Initial	Unit	Setting
ication	110.	oouc		system	value	Onic	range
ters	42	*IP2	Input signal selection 2	Р	0000	\backslash	0000
ame						\setminus	0011h
par			0 0				
sion							
xten			→ LSP signal automatic ON 0: External (depending on the RY4)				
Ĥ			1: Internal (always ON)				
			→ LSP signal automatic ON				
			0: External (depending on the RY5)				
			r: internar (arways ON)				
			Innut signal selection 2	R	0000	7	0000
			Used to select the functions of the input signals.		0000	\setminus	to
						\backslash	0001h
			Clear signal function selection (RY6)				
			0: Cleared when signal turns from "0"				
			(OFF) to "1" (ON) 1: Kept cleared when signal is "1" (ON)				
	13		For manufacturar sotting				
	-10		Must not be changed.				
	44	*OPC	Output signal selection	Р	0000		0000
			Used to select the functions of the output signals.				to
			M code 2-bit output selection				IIIIn
			0: Not output as CN1 external signals				
			1: Output to CN1-23, 24.				
			➡ Trouble, warning output selection 0: Output to CN1-48 at alarm occurrence.	P, R			
			1: Output to CN1-48 at occurrence of either or both of				
			alarm and trouble.				
			► Torque limit-in-progress output 0: Torque limit-in-progress is not output.	P, R			
			1: Torque limit-in-progress is output to CN1-23.				
			M code 2-bit output are chosen at the same time.)				
			Electromagnetic brake interlock output timing				
			0: Output in any of the following statuses independently of the	Р, К			
	servo motor speed: 1) Servo off						
			2) Alarm occurred				
	3) Forced stop signal turned OFF (valid) 1: Output in any of the above 1) to 3) statuses when the motor						
			speed is at or less than the zero speed (50r/min). The time from when the electromagnetic brake interlock signal is output until				
			when the base circuit is shut off can be set in parameter No. 53.				
	45	$\left \right\rangle$	For manufacturer setting Must not be changed		\backslash	$\left \right\rangle$	$\overline{\ }$

classif- ication	No.	Code	Name and Function	Feeding system	Initial value	Unit	Setting range
srs	46	*MOA	Pre-alarm data selection	P, R	0001		0000
nete			Used to choose the pre-alarm data to be output.				to
ıran			Data selection 2				03AAh
ed u			0: Servo motor speed (±output)				
sior			1: Torque (±output)				
ten			3: Torque (+ output)				
Εx			4: Current command output (±output)				
			5: Command pulse frequency				
			7: Droop pulse value 1/1 (± output)				
			8: Droop pulse value 1/16 (±output)				
			9: Droop pulse value 1/32 (±output)				
			A. Droop pulse value 1/64 (⊥ output) → Data selection 1				
			Items are the same as in data selection 2				
			→ Alarm data sampling time selection				
			0: 3.55 [msec]				
			1: 7.11 [msec] 2: 14 2 [msec]				
			3: 28.4 [msec]				
	47	VCO	OVR offset	PR	0	mv	-9999
			Used to set the offset in response to the override command.	1,10	Ū		to
							9999
	48	TPO	TLAP offset Used to set the offset in response to the torque limit analog command	P, R	0	mv	-99999 to
							9999
	49	\searrow	For manufacturer setting	\searrow	\searrow	$\overline{}$	$\overline{}$
			Must not be changed.				
	50 MO1 MO1 offset		P, R	0	mv	-9999	
	Used to set the offset value for the monitor output.						10 9999
	51	MO2	MO2 offset	P, R 0 m			-9999
			Used to set the offset value for the monitor output.				to
							9999
	52	*SIO	External digital display (MR-DP60) selection	P, R	0101	\land	0000
			Set this parameter when using the external digital display.			\setminus	to
						\setminus	0101h
			Evternal display selection				
			0: Encoder pulses (value set in parameter No. 39)				
			are output. (Differential driver)				
			1. External display is used.				
	53	MBR	Electromagnetic brake sequence output	P, R	100	ms	0 to
			Used to set a time delay (1b) between magnetic brake operation and				1000
	54	TI 9	Internal torque limit value ?	ΡŖ	100	%	0 to
	54	112~	Set to define the maximum torque as 100%	1,10	100	70	100
			Set 0010 in parameter No.41 and switch on the external torque limit				
			signal (RY4) to control torque at the value of this parameter.				
			The set value of this parameter should be larger than the internal				
	torque control value in parameter No.40. If smaller, this parameter i						
		ļ	made valid Independently of the switching of RY4.				
	55	\backslash	For manufacturer setting	\backslash	\backslash	\setminus	\searrow
	56		Must not be changed.				\sim
1	57						

classif- ication	No.	Code	Name and Function	Feeding system	Initial value	Unit	Setting range
rs	58	DG2	Ratio of load inertia moment to servo motor inertia moment	P, R	2.0	\setminus	0.0 to
iete			Used to set the ratio of the load inertia moment to the servo motor			\backslash	100.0
ram			shaft inertia moment.			\setminus	
paı			When auto tuning is selected, the result of auto tuning is			\setminus	
ion			automatically set.			\setminus	
ens	59	NCH	Machine resonance control filter	P, R	0	\backslash	0 to 7
Ext			Used to set the frequency to match the resonance frequency of the			\	
			mechanical system.			\backslash	
			Set value Machine resonance frequency [Hz]				
			0 Not used				
			1 1125				
			2 563				
			3 375				
			4 282				
			5 225				
			6 188			\	
			7 161			\	
						\	
	60	PG2	Position control gain 2	P. R	25	rad/s	1 to
	00	1 62	Used to set the gain of the position loop.	1,10	~~	raab	500
			Set this parameter to increase the position response level to load				
			disturbance.				
			Higher setting increase the response level but is liable to generate				
			vibration and/or noise.				
			When auto tuning is selected, the result of auto tuning is				
			automatically set.				
	61	VG1	Speed control gain 1	P, R	1200	rad/s	20 to
			Normally this parameter setting need not be changed.				5000
			Higher setting increases the response level but is liable to generate				
			vibration and/or noise.				
			When auto tuning is selected, the result of auto tuning is				
			automatically set.				
	62	VG2	Speed control gain 2	P, R	600	rad/s	20 to
			Set the parameter when vibration occurs on machines of low rigidity				5000
			or large backlash.				
			Higher setting increases the response level but is liable to generate				
			Vibration and/or noise.				
			when auto tuning is selected, the result of auto tuning is				
	62	VIC	Speed integral componentian	DD	20	me	1 to
	03	VIC	Used to set the time constant of the integral compensation	г, К	۵۵	1115	1000
			When auto tuning is selected the result of auto tuning is				1000
			automatically set.				
	64	VDC	Speed differential compensation	P. R	980		0 to
		.20	Used to set the time constant of differential compensation.	1,10			1000
			When auto tuning is selected, the result of auto tuning is				
			automatically set.				

classif- ication	No.	Code		Name and Fun	ction	Feeding system	Initial value	Unit	Setting range
Optional parameters	65	*COM	Command sy Used to ch system. Wh a parameter 0 0 <for position<="" td=""><td>ystem selection noose the position command nen 1 station is occupied, sett or error. 0 Comme oning system></td><td>system and speed command ting 0001 or 0002 will result in and system selection</td><td>P, R</td><td>0000</td><td></td><td>0000 to 0002h</td></for>	ystem selection noose the position command nen 1 station is occupied, sett or error. 0 Comme oning system>	system and speed command ting 0001 or 0002 will result in and system selection	P, R	0000		0000 to 0002h
			Set value 0 1 2 <for fee<="" roll="" td=""><td>Position command Specify the position block No. Use the remote register to set the position data. eding system></td><td>Speed command Use the speed block No. of the position block to specify. Use the remote register to specify the speed block No. Use the remote register to set the motor speed.</td><td></td><td></td><td></td><td></td></for>	Position command Specify the position block No. Use the remote register to set the position data. eding system>	Speed command Use the speed block No. of the position block to specify. Use the remote register to specify the speed block No. Use the remote register to set the motor speed.				
			Set value 0 1 2	Position command Use RY5 to specify the position block No. Set the position data.	Speed command Use RY2 to specify the speed block No. Use the remote register to specify the speed data. Use the remote register to set the motor speed.				

classif-	No.	Code			Na	me and Function	Feeding	Initial	Unit	Setting
SI SI	66	*DIS	Extern	al DI select	tion		P. R	P:0070		0000
ptional paramete			The i CN1 canno conve 1) Pos	nput signa external ir ot be used rt the follow sitioning sys	ls can be a put signal as the CC wing binary	assigned to the pins of connector CN1 as s. The signals assigned to the CN1 pins C-Link input signals. For the set values, numbers into hexadecimal	.,	R:0000		to 0FFFh
0			bit	Set v	value 1					
			0	RY0	CN1-12	Servo ON				
			1	RY1	CN1-13	Position block number selection bit0				
			2	RY2	CN1-14	Position block number selection bit1				
			3	RY3	CN1-15	Position block number selection bit2				
			4	RY4	CN1-38	Forward rotation stroke end				
			5	RY5	CN1-39	Reverse rotation stroke end				
			6	RY6	CN1-37	Proximity DOG				
			7	RY7	CN1-41	Automatic operation/manual drive mode				
			8	RY8	CN1-42	Temporary stop				
			9	RY9	CN1-43	Zeroing				
			Α	RYA	CN1-44	Forward rotation start				
			В	RYB	CN1-45	Reverse rotation start				
			2) Rol	I feeding sy	stem					
			bit	Setv	value	Signal name				
				0	1					
			0	RY0	CN1-12	Servo ON				
			1	RY1	CN1-13	Restart				
			2	RY2	CN1-14	Speed selection				
			3	RY3	CN1-15	Temporary stop				
			4	RY4	CN1-38	Torque limit selection				
			5	RY5	CN1-39	Second feed distance				
			6	RY6	CN1-37	Clear				
			7	RY7	CN1-41	Automatic operation selection				
			0	RIð	CN1-42	Manual operation selection				
			9		CN1-43	Environd rotation start				
			B	RVB	CN1-44	Poverse rotation start				
				î î î î						
	67	N	For ma Must r	nufacturer	setting		\backslash	0000		\setminus
	69 70 71 72 73 74		in use i		Jeu.					
	75 76 77 78 79									

7.2 Detailed explanation

7.2.1 Electronic gear

Use the electronic gear (parameters No.5, 6) to make adjustment so that the servo amplifier setting matches the moving distance of the machine. Also, by changing the electronic gear value, the machine can be moved at any multiplication ratio to the moving distance on the servo amplifier.

The following examples are used to explain how to calculate the electronic gear value:

(1) Ballscrew setting example Machine specifications

n=NL/NM=1/2Ballscrew lead : Pb = 10 [mm]Reduction ratio : n = 1/2Servo motor resolution : Pt = 8192 [pulse/rev] Servo motor 8192 [pulse/rev] $\frac{\text{CMX}}{\text{CDV}} = \frac{\text{Pt}}{\Delta S} = \frac{\text{Pt}}{n \cdot \text{Pb} \cdot 1000} = \frac{8192}{1/2 \cdot 10 \cdot 1000} = \frac{8192}{5000} = \frac{1024}{625}$ Hence, set 1024 to CMX and 625 to CDV. (2) Conveyor setting example Machine specifications r =160 [mm] Pulley diameter : r = 10 [mm] Servo motor Reduction ratio : n = 1/316384 [pulse/rev] Servo motor resolution : Pt = 16384 [pulse/rev] NL NM n = NL/NM = 1/3 $\frac{\text{CMX}}{\text{CDV}} = \frac{\text{Pt}}{\Delta S} = \frac{\text{Pt}}{\text{n} \cdot \text{r} \cdot \pi \cdot 1000} = \frac{16384}{1/3 \cdot 160 \cdot \pi \cdot 1000} = \frac{16384}{167551.61} = \frac{4096}{41888} = \frac{2048}{20944}$

Reduce CMX and CDV to less than the setting range and round off the first decimal place. Hence, set 2048 to CMX and 20944 to CDV. 7.2.2 Changing the status display screen

By changing the parameter No.19 value, you can change the status display item of the servo amplifier display section or MR-DP60 with CS1 = 0 and that of the parameter unit at power-on. In the initial status, each display shows the current position.

For display details, refer to Section 8.3.

D: ABS counter E: Servo motor speed F: Bus voltage

7.2.3 Analog output

The servo status can be output to two channels in terms of voltage. Use this function when using an ammeter to monitor the servo status or synchronizing the torque/speed with the other servo. The servo amplifier is factory-set to output the motor speed to CH1 and the generated torque to CH2. The setting can be changed as listed below by changing the parameter No.18 value:

Setting	Output item	Description	Setting	Output item	Description
0	Motor speed	8 [V] Max. speed Max. speed Max. speed Max. speed Max. speed Max. speed CW direction	6	Droop pulses (±11.6V/2048pulse)	2048 [pulse] 0 2048 [pulse] 0 2048 [pulse] 0 2048 [pulse] 0 2048 [pulse]
1	Generated torque	Max. torque 0 Max. torque 	7	Droop pulses (±11.6V/8192pulse)	CCW direction 11.6 [V] 8192 [pulse] 0 8192 [pulse] 0 8192 [pulse] - 11.6 [V] CW direction
2	Motor speed	CW CCW direction 8 [V] direction Max. speed 0 Max. speed	8	Droop pulses (±11.6V/32768pulse)	CCW direction 11.6 [V] 32768 [pulse] 0 32768 [pulse] -11.6 [V] CW direction
3	Generated torque	Driving in CW direction 8[V] direction Max. torque O Max. torque	9	Droop pulses (±11.6V/65536pulse)	11.6 [V] 65536 [pulse] 0 65536 [pulse] -11.6 [V] CW direction
4	Current command (Torque command)	8 [V] Max. command current (Max. torque command) 0 Max. command current (Max. torque command) Current (Max. torque command) Current (Max. torque command) Current (Max. command current (Max. torque command) Current (Max. torque command)	A	Droop pulses (±11.6V/131072pulse)	131072 [pulse] 0 131072 [pulse] 0 131072 [pulse] 0 CW direction
5	Command speed	Max. speed 0 Max. speed 0 Max. speed 0 Max. speed 0 Max. speed			

Change the following digits of parameter No.18:

Parameter No.50 and 51 can be used to set the offset voltages to the analog output voltages. The setting range is between -9999 to 9999mV.

Parameter	Description	Setting range [mV]
Parameter No.50	Used to set the offset voltage for the analog monitor CH1 output.	0000 to 0000
Parameter No.51	Used to set the offset voltage for the analog monitor CH2 output.	-9999 to 9999

7.2.4 Changing the stopping pattern at the forward/reverse stroke end

At the factory setting, the CN1-38 pin is valid for the forward rotation stroke end and the CN1-39 pin is valid for the reverse rotation stroke end.

The motor stops when CN1-38-SG are opened during forward rotation. It may be run in the reverse rotation direction. The motor stops when CN1-39-SG are opened during reverse rotation. It may be run in the forward rotation direction.

Changing the parameter No.23 value as indicated below can change the stopping method:

Parameter No. 23 setting	Stopping method
	Sudden stop
(initial value)	Droop pulse value is reset to make a stop.
	Slow stop Droop pulses are issued to make a slow stop.

Setting of parameter No. 66 enables the signals to be used as CC-Link input signals. For the device numbers, the forward rotation stroke end is RY4 and the reverse rotation stroke end is RY5.

7.2.5 Rough match output

Rough match (RX2) is output when the command remaining distance reaches the value set in parameter No.17. The set remaining distance is 0 to 50000 [$\times 10^{STM}$ µm].

7.2.6 Low acoustic noise mode

By selecting the low acoustic noise mode in parameter No.22, audible-frequency magnetic noise generated by the servo motor can be improved about 20dB.

8. PARAMETER UNIT AND DISPLAY SECTION

8.1 Parameter unit keys

The MR-PRU01A parameter unit is used to set data, perform test operation, set parameters, monitor the operating status, and display alarm definition.

MR-PRU01A Structure

8.2 Operation of the parameter unit

(1) Outline of display sequence

The displays and operation procedure in each mode are given on the following pages. Refer to them.

(2) Monitoring mode

(3) Alarm mode

Refer to Section 8.4 for details of the alarm/diagnosis mode screens.

Note. The above applies to the case where the positioning system is used and one station is occupied. Refer to Section 3.5.1 for the meanings of the displayed signal abbreviations.

(4) Parameter mode

(5) Point table setting mode

(6) Test run mode

0 to 5% overshoot screen

t 15% 0 to 30% overshoot screen

8.3 Status display

The running servo status can be shown on the parameter unit display and servo amplifier display. In addition, the status can be displayed in up to six digits by use of the optional external digital display (MR-DP60). For the usage and parameter setting method, refer to Section 8.5.

	Parameter			Indication	n range
Status display	unit	Unit	Description	Servo amplifier	MR-DP60 and
	indication			display	parameter unit
Current position	Position	×10 ^{s™} mm ×10 ^{s™} inch	Positioning system: The current position from the machine home position of 0 is displayed. Roll feeding system: 0 appears at power-on, counting starts when the start signal turns on, and the current position appears.	—9999 to 9999	—9999999 to 999999
Command position	Ref.Pos.	$\begin{array}{l} \times 10^{\text{STM}}\text{mm} \\ \times 10^{\text{STM}}\text{inch} \end{array}$	The position data or preset command position in the position block is displayed.	-9999 to 9999	-9999999 to 999999
Command remaining distance	Remain	$ imes 10^{\text{STM}}\text{mm}$ $ imes 10^{\text{STM}}\text{inch}$	During operation, the remaining distance between current position and command position is displayed. During a stop, the next feed distance is displayed.	—9999 to 9999	—9999999 to 999999
Override	Over ride	%	The set value of override is displayed. 100% appears when override is invalid.	0 to 200	0 to 200
Position block	Pos. block	No.	The position block number being executed is displayed.	0 to 255	0 to 255
Feedback pulse value	F/B Pulse	pulse	Feedback pulses from the servo motor encoder are counted and displayed. When the value exceeds ±99999999, it starts with 0. Press "RESET" to reset the value to "0".	—9999 to 9999	—99999999 to 9999999
Machine speed	Machi. SPD	mm/min m/s	Speed multiplied by the electronic gear is displayed. The unit can be changed with parameter No. 4.	0 to 9.999	0 to 999.999
Droop pulse value	Droop	pulse	The pulse value of the deviation counter is displayed. Reverse rotation pulse value is indicated by "-".	-9999 to 9999	—99999999 to 9999999
Torque limit command voltage	TQ limit	V	The voltage of the torque limit command (TLAP) is displayed.	0.00 to 10.00	0.00 to 10.00
Regenerative load factor	Reg. load	%	The percentage of regenerative power to the permissible regenerative value is displayed.	0 to 100	0 to 100
Effective load factor	Effc. load	%	Continuous effective load torque is displayed. The effective value is displayed relative to the rated torque of 100%.	0 to 320	0 to 320
Peak load factor	Peak load	%	Maximum generated torque is displayed. The peak value for the past 15 seconds is displayed relative to the rated torque of 100%.	0 to 320	0 to 320

8. PARAMETER UNIT AND DISPLAY SECTION

	Parameter	ter Unit on	Description	Indication range	
Status display	unit			servo amplifier	MR-DP60 and
	indication			display	parameter unit
Within one- revolution position	Cyc. pos	pulse			Servo motor
			The position within one revolution is displayed in	Servo motor	with
			terms of encoder pulses.	with resolution	resolution of
			The value returns to 0 when it exceeds the	of 8192 pulses: 0	8192 pulses: 0
			maximum number of pulses.	to 8191	to 8191
			As the servo amplifier display shows data in four	Servo motor	Servo motor
			digits, it shows the four lower digits of the actual	with resolution	with
			position within one revolution.	of 16384 pulses:	resolution of
			CCW rotation increases the value.	0 to 16383	16384 pulses:
					0 to 16383
ABS counter	ABS Count	rev	Moving distance from the home position in the		
			absolute position		
			detection system is displayed in the counter value		
			of the absolute	-32768 to	-32768 to
			position encoder.	32767	32767
			As the servo amplifier display shows data in four		
			digits, it shows the four lower digits of the actual		
			counter value.		
Servo motor speed	Motor SPD	r/min	The speed of the servo motor is displayed.	-4600 to 4600	-4600.0 to
			Reverse rotation is indicated by "-".		4600.0
Bus voltage	P/N Volt	V	The voltage (across P-N) of the main circuit converter is displayed.	0 to 400	0 to 400
8.4 Alarm/diagnosis

The servo motor failing to rotate or any abnormality occurring during operation is indicated by the corresponding alarm code. The alarm may also be confirmed on the servo amplifier display, parameter unit or digital display.

(1) Servo amplifier display

When abnormality occurs, its definition is indicated by the corresponding number. For definitions, refer to Section 11.4.

(2) Parameter unit

When abnormality occurs, its definition can be confirmed as listed below.

(a)	Alonn	diagr	onin	lict
(a)	Аагш	/uiagi	IOSIS	IISU
·/				

No.	Name	Parameter unit display	Description
1	Current alarm	1st AL	The currently occurring alarm number, concurrent alarm, cause of alarm occurrence, etc. are displayed. When alarm occurs, the current alarm overrides the others in any display mode.
2	Unrotated motor reason	Not Rotate	When the servo motor does not rotate, the reason why it does not operate can be displayed.
3	Alarm history	ALM Hist.	The history of alarms from the most recent one to 9th preceding one is displayed with alarm numbers and energization time up to alarm occurrence. All past alarms can be cleared. (For full information, refer to Chapter 11.5)
4	DIO signal	I/O Sig.	The ON-OFF states of the external input signals are displayed.
5	Setting time	T after P	The time from when the position command becomes 0 to when the in-position signal is output is displayed.
6	Alarm occurrence data	Before ALM	The status at alarm occurrence (16 types) is displayed.
7	Accumulative power-on time	Power ON T.	Accumulative power-on time after shipment from our factory is displayed.
8	S/W number	S/W No.	For management by the manufacturer.
9	Ratio of load inertia moment to motor inertia moment	Inertia	The ratio of load inertia converted into the equivalent value at the servo motor shaft to the rotor inertia of the servo motor itself is estimated and displayed.
10	ABS data	ABS data CYSO ABS0	Absolute position data (ABC in-position) Present position relative to the home position of 0 1-revolution data (CYSO) Position within 1 revolution Multi-revolution data (ABS0) Home position in multi-revolution data

(b) Unrotated motor reason

			O: Relevant,	\: Irrelevant
			Feeding	system
No.	b. Parameter unit display Description			Roll feeding
1	SON off	Servo on (RY0) signal is "0" (OFF).	0	0
2	Alarm	Alarm has occurred.	0	0
3	RES on	Reset (RY1A or RY3A) signal is "1" (ON).	0	0
4	EMG off	Forced stop (EMG) signal is "0" (OFF).	0	0
5	LSP on	Forward rotation stroke end (RY4) signal is "0" (OFF).	0	
6	LSN off	Reverse rotation stroke end (RY5) signal is "0" (OFF).	0	
7	ST1,ST2 on	 Forward rotation start (RYA) and reverse rotation start (RYB) are both "1" (ON). Start signal is "1" (ON) in the positioning or zeroing mode. 	0	0
8	ST1,ST2 off	Forward rotation start (RYA) and reverse rotation start (RYB) are both "0" (OFF).	0	0
9	ST1 off	 Start (RYA) signal turns to "0" (OFF) when absolute position command is given. Start (RYA) signal is "0" (OFF) in the dog type zeroing mode. 	0	
10	Ext. torque limit low	The servo motor speed is 5r/min of less when the torque limit signal is switched on.	0	0
11	Int. torque limit low	The servo motor speed is 5r/min of less when the torque limit signal is switched on.	0	0
12	Over ride lower	The servo motor speed, which is preset to higher than 1r/min, is restricted to not higher than 1r/min by override.	0	0
13	Speed 🖵- lower 🔲 = 1 to 8 (speed block No.)	In positioning operation, the servo motor speed is preset to not higher than 1r/min, independently of whether override is valid or invalid.	0	0
14	Test mode	The motor does not operate because the FWD (forward rotation), REV (reverse rotation) or 1STEP (1-step feed) key of the parameter unit is not pressed in test operation.		0
15	Feed ref. lower	In positioning operation, the command remaining distance is less than the rough match output range.	0	0
16	JOG speed lower	In JOG feed, the JOG speed is preset to not higher than 1r/min, independently of whether override is valid or invalid.	0	0
17	ORG Speed lower	The zeroing speed or creep speed in the zeroing mode is preset to not higher than 1r/min, independently of whether override is valid or invalid.	0	0
18	Drive Mode Missetting	The operation mode has not been selected in the roll feeding system.	0	0
19	Speed No.0 Selected	Speed block No. 0 has been selected. Set any of speed blocks No. 1 to 8.	0	0
20	Once stop	During temporary stop.	0	0

POINT

- When the roll feeding operation, automatic positioning operation or zeroing (dog type) mode has been set, a start is made when the start signal (RYA, RYB) turns from OFF to ON. After a start, therefore, return RYA or RYB to OFF. Operation cannot be performed if RYA or RYB remains ON.
- Check the unrotated motor reasons No. 13 to 20 after clearing the No. 1 to 12 reasons.

8.5 Servo amplifier display

The status display and alarm can also be shown on the servo amplifier display and the digital display.

8.5.1 Display examples

The servo amplifier display shows the four lower digits of the data to be displayed.

Item	4-digit dis	play of servo amplifier	Display of digital display
Indication of current position (for -654.321) Motor speed (during reverse rotation at 3000r/min)	└ <u>╷</u> <u>-</u> ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	The decimal points are lit as shown on the left to indicate the value of negative polarity. At this time, the actual decimal point is turned off.	- 6 5 4 3 2 1
Indication of alarm or warning occurrence Indication of overcurrent alarm occurrence Indication of watchdog alarm	8132	If a warning has occurred, the original status display is restored by removing its cause. If an alarm has occurred, its indication is held until the alarm is reset or power is switched off once. The decimal points in all four digits are lit to indicate the watchdog alarm.	Not indicated in the servo amplifier display. However, the error related to MR- DP60 is displayed. • CPU error CPU error Communication error
Indication during test operation	*	The decimal point in the lowest digit of the display flickers.	The parameter No. 19 setting or servo amplifier's CS1 setting (table below) status is displayed.
Indication given for 2 seconds after power-on or CS1 change-over CS1: Current position abbreviation indication when set			

8.5.2 Selection of display data

The status display data can be selected by setting parameter No. 19 and rotary switch CS1. (1) Parameter setting

(2) Setting of rotary switch CS1

You can select the status display by setting the rotary switch CS1 of the servo amplifier. Setting of "0" shows the status set in the first digit of parameter No. 19.

CS1 setting	Status display		CS1 setting	Status display
0	Parameter No. 19 setting	ſ	7	Droop pulse
1	Command position		8	Torque limit command voltage
2	Command remaining distance		9	Regenerative load factor
3	Override		А	Effective load factor
4	Position block	ſ	В	Peak load factor
5	Feedback pulse value		С	Within-one-revolution position
6	Machine speed		D	Servo motor speed

8.6 Test operation mode

The test operation mode is designed to confirm servo operation. It is not designed
to confirm machine operation. Do not use this mode with the machine. Always use
the servo motor alone.
 If an operation fault occurs, use forced stop (EMG) to make a stop.

The parameter unit can be used to run the servo motor. For the way of operating the parameter unit, refer to Section 8.2 (6).

When a servo motor with electromagnetic brake is used with the machine to prevent the servo motor from starting in a brake operating status, always make up a sequence circuit which will operate the brake with the electromagnetic brake signal (RXB) of the controller.

8.6.1 JOG operation

JOG operation can be performed with no command given from the external command device.

(1) Operation

Connect EMG-SG to perform JOG operation, and connect VDD-VIN to use the internal power supply. Hold down the "FWD" or "REV" key to rotate the servo motor. Release it to stop. The operating conditions can be changed with the parameter unit. The initial conditions and setting ranges of operation are listed below:

Item	Initial value	Setting range
Speed [r/min]	200	0 to instantaneous permissible speed
(Note) Acceleration/deceleration time constant [ms]	1000	0 to 50000

Note: The acceleration time constant indicates the time required for the servo motor to attain the rated speed from a stop (0r/min), and the deceleration time constant indicates the time required for the servo motor to stop from the rated speed.

How to use the keys is listed below:

Key	Description
	Press to start CCW
"FWD"	rotation.
	Release to stop.
	Press to start CW
"REV"	rotation.
	Release to stop.

If the parameter unit cable is disconnected during JOG operation, the servo motor is decelerated to a stop.

(2) Status display

The status display can be monitored during JOG operation. At this time, the "FWD", "REV" and "STOP" keys are valid.

8.6.2 Positioning operation

Positioning operation can be performed once, with no command given from the external command device.

(1) Operation

Connect EMG-SG to perform positioning operation, and connect VDD-VIN to use the internal power supply.

By pressing the "FWD" or "REV" key, the servo motor rotates and the machine moves the preset distance and stops. The operating conditions can be changed with the parameter unit. The initial conditions and setting ranges of operation are listed below:

Item	Initial value	Setting range	
Moving distance [pulse]	100000	0 to 9999999	
Speed [r/min]	200	0 to instantaneous permissible speed	
(Note) Acceleration/deceleration time constant [ms]	1000	0 to 50000	

Note: The acceleration time constant indicates the time required for the servo motor to attain the rated speed from a stop (0r/min), and the deceleration time constant indicates the time required for the servo motor to stop from the rated speed.

How to use the keys is listed below:

Key	Description		
"FWD"	Press to start positioning operation in the CCW direction.		
"REV"	Press to start positioning operation in the CW direction.		
"STOP"	Press during operation to make a temporary stop. Press the "STOP" key again to erase the remaining distance. To resume operation, press the key that was used to start operation.		

If the parameter unit cable is disconnected during positioning operation, the servo motor is decelerated to a stop.

(2) Status display

The status display can be monitored during positioning operation. At this time, the "FWD", "REV" and "STOP" keys are valid.

8.6.3 1-step feed operation

When there is no command given from the external command unit, you can perform positioning operation once in accordance with the point table.

(1) Operation

Connect EMG-SG to perform 1-step feed operation, and connect VDD-VIN to use the internal power supply.

Choose the position block No. and press the "1STEP" key to rotate the servo motor and perform operation in accordance with the settings of the selected position block. The position block No. selected can be changed from the parameter unit. The initial condition and setting range of the operation are listed below:

Item	Initial setting	Setting range	
Desition block No	0	When 1 station is occupied: 0 to 7	
POSICIOII DIOCK INO.	0	When 2 stations are occupied: 0 to 255	

The keys are explained in the following table:

Key	Description
"1STEP"	Pressing this key starts positioning operation in accordance with the settings of the selected position block.
"STOP"	Pressing this key during operation stops the operation temporarily. Pressing the "STOP" key again erases the remaining distance. To resume operation, press the "1STEP" key.

If the parameter unit cable is disconnected during positioning operation, the servo motor decelerates to a stop.

(2) Status display

The status display can be monitored during positioning operation. At this time, the "FWD", "REV" and "STOP" keys are valid.

8.6.4 Motorless operation

Without the servo motor being connected, the output signals can be provided and the status display monitored in response to external input signals as if the servo motor is actually running. This function can be used for the sequence check of the host programmable controller or the like.

(1) Operation

After turning off Servo ON (RY0), choose motorless operation. Then, perform external operation as in ordinary operation.

(2) Status display

The status display can be monitored during motorless operation.

(3) Termination of motorless operation

Switch power off to end motorless operation.

8.6.5 DO forced output

Each output signal can be turned on/off independently of the input signals and servo status. This function can be used for servo wiring check, etc.

9. ADJUSTMENT

9. ADJUSTMENT

- 9.1 What is gain adjustment?
- 9.1.1 Difference between servo amplifier and other drives

Besides the servo amplifier, there are other motor drives such as an inverter and stepping driver. Among these drives, the servo amplifier requires gain adjustment.

The inverter and stepping driver are in an open loop (actual motor speed and position are not detected on the driver side).

On the other hand, the servo amplifier always detects the positions and speeds of the motor and machine using the servo motor encoder, and exercises control to match the position and speed commands with the actual motor (machine) position and speed. In the servo system, adjustment is needed because:

- (1) Response changes according to the inertia moment of the machine;
- (2) Vibration occurs due to the resonance point, etc. peculiar to the machine; and
- (3) Operation delay and accuracy specification differ between machines and response should satisfy this specification.

9.1.2 Basics of the servo system

A general servo system configuration is shown above. The servo control system consists of three loops: current loop, speed loop and position loop. Among these three loops, the response of the inside loop must be increased 4 to 6 times higher. If this condition is not satisfied, vibration will be generated. If the condition further worsens, hunting will occur.

(1) Current loop

For this servo amplifier, the response level of the current loop is factory-set to a high value and need not be adjusted. If the motor is installed to the machine, the response of the current loop will hardly vary.

(2) Speed loop

Response will vary according to the inertia moment of the machine. When the load inertia moment increases, the response of the speed loop will reduce. Use the speed loop gain (VG2) to compensate for the reduction of the response level.

1+m

Speed loop response $FV[rad/s] = \frac{Amplifier gain setting VG2[rad/s]}{VG2[rad/s]}$

m: Load inertia moment ratio

$$=\frac{JL}{JM}$$

 $J_L = load$ inertia moment

 J_M = servo motor shaft inertia moment

(3) Position loop

The response level will not vary according to machine conditions

Position loop response $f_p[rad/s]$ = amplifier gain setting PG2[rad/s]

When the motor is installed to the machine, the gain must be adjusted to satisfy $f_{\rm V}$ = 4 to $6f_{\rm P}$ according to the load inertia moment ratio m.

9.2 Gain adjustment

9.2.1 Parameters required for gain adjustment

Parameter No.	Symbol	Name
No.21	ATU	Auto tuning
No.7	PG1	Position loop gain 1
No.59	NCH	Machine resonance suppression filter.
No.58	GD2	Ratio of load inertia moment to motor inertia moment
No.60	PG2	Position loop gain 2
No.61	VG1	Speed loop gain 1
No.62	VG2	Speed loop gain 2
No.63	VIC	Speed integral compensation

9.2.2 Block diagram

The block diagram of the servo control section of this servo amplifier is shown above. (The current loop is omitted.)

(1) Actual loop section

A control loop designed to control the actual motor and acts to control the servo system stably in response to the load torque of the machine.

(2) Model section

Acts to provide the ideal operation values to the current loop in response to the command.

(3) Auto tuning section

Judges the load inertia moment of the machine fitted with the actual motor from the operation error of the motor to change each control gain in real time.

The gains changed by auto tuning are PG1, VG1, PG2, VG2 and VIC.

9.2.3 What is auto tuning?

The load inertia moment is estimated from the angular speed (ω) and torque (T) are estimated in accordance with the equation of motion (9.1) used for motor acceleration/deceleration. In actuality, the acceleration/deceleration characteristics of the model and those of the actual motor are compared to estimate the inertia moment of the load in real time.

 $\begin{array}{l} J\frac{d\omega}{dt}{=}\,T &(9.1)\\ J: Inertia moment\\ \omega: Angular speed\\ T: Torque \end{array}$

Real-time auto tuning is performed in the following procedure:

- (1) When the motor makes acceleration/deceleration, load inertia moment JL is estimated in the above method to calculate the load inertia moment ratio (GD2).
- (2) Each gain (PG1, VG1, PG2, VG2, VIC) to the calculated load inertia moment ratio (GD2) is changed according to the response level set in parameter No.21. Note that these gains have been patterned beforehand to satisfy the aforementioned stabilization condition.

9.3 Gain adjustment by auto tuning

9.3.1 Adjustment method

The MR-H-TN is factory-set to make auto tuning valid (parameter No.21: $\Box 0 \Box 1$).

The initial settings provide sufficient tuning for general machines. Higher-level tuning can be provided by adjusting the response setting (third digit of parameter No.21) according to machine rigidity.

The following table lists guidelines for response setting to drive systems. Choose slow response when using a reduction gear having backlash:

Main drive system (Note)		Fast response	Middle response	Slow response
Dellement	Direct coupling	•	→	
Ballscrew	With reduction gear	↓	► ►	
Darla 6 miniar	Direct coupling		←	•
Rack & pinion	With reduction gear			
Thursday a back	Direct coupling		•	→
Timing beit	With reduction gear		•	
	Direct coupling		←	→
Chain	With reduction gear		←	

The following is how to adjust the response setting to machine phenomena:

Actual machine operation	Ideal machine operation	Parameter No.21 setting
Settling time is long (Note)	Reduce settling time.	Increase response setting.
Large overshoot at stop	Reduce overshoot.	Decrease response setting. Set machine selection setting to "large friction".
Gear sound generated from machine	Reduce gear sound.	Decrease response setting.

Note: Settling time indicates time from zero command pulse to servo motor stop.

9.3.2 Valid conditions

POINT
If the acceleration/deceleration time is long or the motor speed used is only low speed, the valid conditions of auto tuning are not satisfied. Therefore, it may result in false tuning. In this case, after performing operation which satisfies the auto tuning conditions, set parameter No. 21 to "auto tuning not executed".

This section provides constraints on the operation pattern to enable excellent auto tuning. If the conditions in this section cannot be satisfied, normal auto tuning may not be performed. In this case, after executing auto tuning in operation which satisfies the conditions given in this section, make auto tuning invalid to disallow the gain setting from being changed.

- (1) Set the acceleration time (time until the preset speed is reached) to 5s or less and the acceleration/deceleration current to 50% or more.
- (2) Perform operation several times until the cumulative acceleration/deceleration time is 1s or more.
- (3) Set the servo motor speed to 500r/min or more.

9.4 Manual gain adjustment

On some machines, gain adjustment may not be made by auto tuning or excellent gain setting may not be made if gain adjustment is performed by auto tuning. In this case, adjust the gains manually. Use any of the methods given in this section to adjust the gains.

9.4.1 When machine rigidity is low

(1) Machine condition

Because of low machine rigidity, the response setting of auto tuning is set to slow response and it takes too much time to reach the target position.

When the machine or motor shaft is moved lightly at a stop, it moves easily.

- (2) Adjustment procedure
 - (a) Adjustment 1
 - 1) Execute auto tuning with the response setting of the level at which machine will not vibrate. Set 0101 in parameter No.21.
 - 2) Set "Not executed" auto tuning in parameter No.21.
 - 3) Gradually decrease the speed integral compensation VIC (parameter No.63) setting.
 - (b) Adjustment 2
 - 1) Perform auto tuning with the response setting of slow response. Set 0101 in parameter No.21.
 - 2) Set 563Hz or 375Hz to the machine resonance suppression filter (Parameter No.59).
 - 3) Alternate a start and a stop several times, execute auto tuning, and check whether the machine does not vibrate.
 - 4) If the machine condition does not become excellent after the above adjustment, reduce the setting of speed integral compensation as in Adjustment 1.

9. ADJUSTMENT

- 9.4.2 When the machine vibrates due to machine resonance frequency
- (1) Machine condition

The servo motor shaft is oscillating at high frequency (100Hz or more).

The servo motor shaft motion cannot be confirmed visually. However, if the machine generates large noise and vibrates, make Adjustment 1.

If higher "response setting" of auto tuning increases vibration, make Adjustment 2.

- (2) Adjustment procedure
 - (a) Adjustment 1
 - 1) Perform auto tuning with the response setting of slow response.
 - Set 0101 in parameter No.21.
 - 2) Set 563Hz or 375Hz to the machine resonance suppression filter (Parameter No.59).
 - 3) Alternate a start and a stop several times, execute auto tuning, and check whether the machine does not vibrate.
 - 4) Increase the machine resonance suppression filter value gradually and repeat step 3). The optimum value is provided at the point just before vibration increases.
 - 5) To further shorten the settling time, gradually increase the response setting in parameter No.21 and repeat steps 1) to 4).

(b) Adjustment 2

1) Choose the response setting of slow response.

Set 0101 in parameter No.21.

- 2) Set the load inertia moment ratio (machine inertia moment ratio in parameter No.58).
 - If an exact machine inertia moment ratio is unknown, enter an approximate value.

When the value is set in this parameter, the following parameters are set automatically. When there is no machine resonance, the value of each parameter is set to the ideal gain for the parameter No.58 value.

Parameter No.	Symbol	Name
7	PG1	Position loop gain 1
60	PG2	Position loop gain 2
61	VG1	Speed loop gain 1
62	VG2	Speed loop gain 2
63	VIC	Speed integral compensation

- 3) Alternate a start and a stop several times, execute auto tuning, and check whether the machine does not vibrate.
- 4) Make the speed control gain (parameter No. 62) about 1000 lower than the automatically set value and repeat steps 2) to 4) in Procedure 1. The optimum value is obtained immediately before vibration increases.
- 5) When there is no machine resonance, check the operating status and gradually increase the speed loop gain 2 (parameter No.62) and repeat steps 2) to 4) in Adjustment 1. Set the value about 50 to 100 smaller than the value at which gear sound begins to be generated.

Make this gain a little smaller if there is variation in the machine because a timing belt or the like is used.

6) To further shorten the settling time, gradually increase the response setting of parameter No.21 and repeat steps 1) to 5).

9.4.3 Load inertia moment is 20 or more times

(1) Machine condition

The machine inertia moment is 20 times or more and the servo motor oscillates at low frequency (5Hz or less). At this time, servo motor shaft vibration can be confirmed visually.

This adjustment method is valid for the following machines:

1) Machine in which a timing belt is driven without reduction gear

2) Machine in which a disc is rotated without reduction gear

3) Machine of which ballscrew lead is long

(2) Adjustment procedure

1) Choose the response setting of slow response.

Set 0101 in parameter No.21.

2) Set the load inertia moment ratio (machine inertia moment ratio in parameter No.58).

If an exact machine inertia moment ratio is unknown, enter an approximate value.

When the value is set in this parameter, the following parameters are set automatically. When there is no machine resonance, the value of each parameter is set to the ideal gain for the parameter No.58 value.

Parameter No.	Symbol	Name
7	PG1	Position loop gain 1
60	PG2	Position loop gain 2
61	VG1	Speed loop gain 1
62	VG2	Speed loop gain 2
63	VIC	Speed integral compensation

3) Alternate a start and a stop several times, and check whether the machine does not vibrate.

4) If vibration still persists, repeat steps 2) and 3).

- 5) If vibration still persists, make (a) Adjustment 1 and (b) Adjustment 2 in Section 10.4.2 (2).
- 6) After adjustment is over, make Adjustment 1 in Section 9.4.1 to further improve the performance.

9. ADJUSTMENT

- 9.4.4 When shortening the settling time
- (1) Machine condition

The settling time will be increased by the gains provided by auto tuning.

- (2) Adjustment procedure
 - (a) Choose the response setting of slow response. Set 0101 in parameter No.21.
 - (b) Alternate a start and a stop several times, execute auto tuning, and check whether the machine does not vibrate.
 - (c) Set the load inertia moment ratio (machine inertia moment ratio in parameter No.58).

If an exact machine inertia moment ratio is unknown, enter an approximate value.

When the value is set in this parameter, the following parameters are set automatically. When there is no machine resonance, the value of each parameter is set to the ideal gain for the parameter No.58 value.

Parameter No.	Symbol	Name
7	PG1	Position loop gain 1
60	PG2	Position loop gain 2
61	VG1	Speed loop gain 1
62	VG2	Speed loop gain 2
63	VIC	Speed integral compensation

- (d) Set " $\Box \Box \Box \Box$ " in parameter No.21 to make auto tuning invalid. Make the parameter No.7, 60 to 63 settings manually adjustable.
- (e) Check the operating status and adjust the following parameter values:

Parameter No.	Parameter No. Symbol Name		Description	
7	PG1	Position loop gain 1	Higher setting shortens the settling time but is	
60	PG2	Position loop gain 2	liable to cause overshooting.	
61	VG1	Speed loop gain 1	Higher setting improves the servo response level	
62	VG2	Speed loop gain 2	but is liable to cause vibration.	
			Lower setting keeps the speed constant to load	
63	VIC	Speed integral compensation	disturbance and increases holding force at a stop	
			(servo rigidity) but is liable to cause overshooting.	

Make adjustment by gradually increasing the parameter No.7, 60 to 62 settings at the same ratio and reducing the speed integral compensation (parameter No.63). The optimum value is provided at the point just before vibration increases. Use of the machine resonance filter (parameter No.59) may increase the limit point.

9. ADJUSTMENT

9.4.5 When the same gain is used for two or more axes

(1) Machine condition

To perform interpolation operation with two or more axes of servo amplifiers, the position loop gains of the axes are set to the same value.

- (2) Adjustment procedure
 - (a) To adjust the gains of each axis, adjust the gains of all axes in the adjustment procedures in Sections 9.4.1 to 9.4.5.

(b) Set " $\Box \Box \Box \Box \Box$ " or " $\Box \Box \Box \Box 2$ " in parameter No.21.

□□□0: Interpolation control....The following parameter values change at the next start/stop.

Parameter No.	Symbol	Name
7	PG1	Position loop gain 1
60	PG2	Position loop gain 2
63	VIC	Speed integral compensation

 \Box 2 \Box \Box : No auto tuning......Make auto tuning invalid and set each gain manually.

(c) Match position loop gain 1 to the minimum value of each axis to make the gains of all axes equal.

10. INSPECTION

 Before starting maintenance and/or inspection, make sure that the charge lamp is off more than 10 minutes after power-off. Then, confirm that the voltage is safe in the tester or the like. Otherwise, you may get an electric shock. Any person who is involved in inspection should be fully competent to do the work. Otherwise, you may get an electric shock. For repair and parts replacement, contact your safes representative.

POINT

- Do not test the servo amplifier with a megger (measure insulation resistance), or it may become faulty.
- Do not disassemble and/or repair the equipment on customer side.

10.1 Inspection

- It is recommended to make the following checks periodically:
- 1) Check for loose terminal block screws. Retighten any loose screws.
- 2) Check the servo motor bearings, brake section, etc. for unusual noise.
- 3) Check the cables and the like for scratches and cracks. Perform periodic inspection according to operating conditions.
- 4) Check the servo motor shaft and coupling for misalignment.

10.2 Life

The following parts must be changed periodically as listed below. If any part is found faulty, it must be changed immediately even when it has not yet reached the end of its life, which depends on the operating method and environmental conditions.

For parts replacement, please contact your sales representative.

Part name		Life guideline
	Smoothing capacitor	10 years
	Relay	100,000times
Servo amplifier	Cashing for	10,000 to 30,000
	Cooling fan	hours (2 to 3 years)
	Absolute position battery	Refer to Section 4.9.

(1) Smoothing capacitor

Affected by ripple currents, etc. and deteriorates in characteristic. The life of the capacitor greatly depends on ambient temperature and operating conditions. The capacitor will reach the end of its life in 10 years of continuous operation in normal air-conditioned environment.

(2) Relays

Their contacts will wear due to switching currents and contact faults occur. Relays reach the end of their life at cumulative 100,000 switching times (switching life), which depends on the power supply capacity.

(3) Servo amplifier cooling fan

The cooling fan bearings reach the end of their life in 10,000 to 30,000 hours. Normally, therefore, the fan must be changed in a few years of continuous operation as a guideline. It must also be changed if unusual noise or vibration is found during inspection.

(4) Servo motor bearings

When the servo motor is run at rated speed under rated load, change the bearings in 20,000 to 30,000 hours as a guideline. This differs on the operating conditions. The bearings must also be changed if unusual noise or vibration is found during inspection.

(5) Servo motor oil seal, V ring

Must be changed in 5,000 hours of operation at rated speed as a guideline. This differs on the operating conditions. These parts must also be changed if oil leakage, etc. is found during inspection.

(6) Servo motor cooling fan (HA-LH11K2 or more)

The design life of the cooling fan is 20,000 hours. Change the cooling fan periodically.

11.1 Trouble at start-up

CAUTION • Excessive adjustment or change of parameter setting must not be made as it will make operation instable.

POINT

• If the servo motor is inoperative, refer to the "unrotated motor reason" screen (Section 8.4 (2)) and take corrective action.

The following faults may occur at start-up. If any of such faults occurs, take the corresponding action.

No.	Start-up sequence	Fault	Investigation	Possible cause	Refer to
1	Power on	 LED is not lit. LED flickers.	Not improved if connectors CN1, CN2, CN3 and CN4 are disconnected.	 Power supply voltage fault Servo amplifier is faulty. 	
			Improved when connectors CN1 is disconnected.	Power supply of CN1 cabling is shorted.	
			Improved when connector CN2 is disconnected.	 Power supply of encoder cabling is shorted. Encoder is faulty. 	
			Improved when connector CN3 is disconnected.	Power supply is shorted.	
		Alarm occurs.	Refer to Section 11.4 and rem	ove cause.	Section 11.4
2	Switch on servo-on	Alarm occurs.	Refer to Section 11.4 and rem	ove cause.	Section 11.4
	signal.	Servo motor shaft is not servo-locked (is free).	Check the display to see if the controller is ready to operate.	 Servo on signal is not input. (Wiring mistake) 24VDC power is not supplied to VIN 	Section 8.3
3	Gain adjustment	Rotation ripples (speed fluctuations) are large at low speed.	 Make gain adjustment in the following procedure: 1) Increase the auto tuning response level. 2) Repeat acceleration and deceleration several times to complete auto tuning. 	Gain adjustment fault	Chapter 9
		Large load inertia moment causes the servo motor shaft to oscillate side to side.	Make gain adjustment in the following procedure: If the servo motor may be run with safety, repeat acceleration and deceleration several times to complete auto tuning.	Gain adjustment fault	Chapter 9
4	Cyclic operation	Position shift occurs	Confirm the cumulative command pulses, cumulative feedback pulses and actual servo motor position.	Pulse counting error, etc. due to noise.	

11.2 Operation performed at alarm/warning occurrence

		Operation mode		
Fault location	Description	Parameter unit test operation	CC-Link operation	
Servo side warning	Servo operation	Continued	Continued	
occurrence	Data communication	Continued	Continued	
Servo side alarm	Servo operation	Stopped	Stopped	
occurrence	Data communication	Continued	Continued	
CC-Link	Servo operation	Continued	Stopped	
communication alarm occurrence	Data communication	Stopped	Stopped	

11.3 CC-Link communication alarm

Any of the following indications is provided on the communication alarm display.

(Note) Communication alarm display LEDs		olay LEDs	Operation	
L.RUN	SD	RD	L.ERR	Operation
0	0	0	0	Normal communications are made but CRC error sometimes occurs due to noise.
0	0	0	•	Normal communications
0	0	•	0	Hardware fault
0	0	•	•	Hardware fault
0	•	0	0	Receive data resulted in CRC error and response cannot be made.
0	•	0	•	Data does not reach host station.
0	•	•	0	Hardware fault
0	•	•	•	Hardware fault
•	0	0	0	Polling response is made but refresh receive is in CRC error.
•	0	0	•	Hardware fault
•	0	•	0	Hardware fault
•	0	•	•	Hardware fault
•	•	0	0	Data addressed to host station resulted in CRC error.
•	•	0	•	Data does not reach host station or data addressed to host station cannot be received due to noise.
•	•	•	0	Hardware fault
•	•	•	0	Baudrate setting unauthorized
•		0	0	Station number setting unauthorized
•	0	0	0	Baud rate or station number setting changed at any point (ERROR flickers for about 0.4s)
•	•	•	•	Data cannot be received due to power-off, power supply section failure, open cable or like. WDT error occurrence (hardware fault)

Note. ○: On ●: Off ©: Flickering

11.4 At occurrence of alarm or warning

• If any alarm has occurred, detect the trouble (ALM) signal and turn off the servo on
(SON) signal.

11.4.1 Alarm/warning list

POINT	
 When any 	of the following alarms has occurred, always remove its cause
and allow a	about 30 minutes for cooling before resuming operation. If
operation i	s resumed by switching control circuit power off, then on to
reset the a	larm, the servo amplifier, servo motor and regenerative brake
option may	become faulty.
 Regenera 	tive alarm (AL.30)

- Overload 1 (AL.50)
- Overload 2 (AL.51)
- The alarms can be deactivated by switching power off then on.
- The alarms marked "O" in the Alarm Deactivation field of the following table can be deactivated in either of the following ways:
 - Press the "RES" key of the parameter unit.
 - Turn on the reset signal (RY1A or RY3A).

\setminus	Indication	(No	ote) Al	arm co	ode	Function name	Parameter unit	Alarm
		RX9	RX8	RX7	RX6		screen display	deactivation
	AL.10	0	0 0 1 0 Under voltage		Under volt	\sim		
	AL.12	0	0	0	0	Memory alarm 1	Memory er1	
	AL.13	0	0	0	0	Clock alarm	OSC err	
	AL.14	0	0	0	0	Watchdog	Watch dog	
	AL.15	0	0	0	0	Memory alarm 2	Memory er2	
	AL.16	0	1	1	0	Encoder alarm 1	PLG err 1	
	AL.17	0	0	0	0	Board alarm	Board err	
	AL.19	0	0	0	0	Memory alarm 3	Memory er3	
	AL.1A	0	1	1	0	Motor combination error	Motor err.	
	AL.20	0	1	1	0	Encoder alarm 2	PLG err 2	
	AL.24	1	1	0	0	Ground fault	Grounded	0
	AL.25	1	1	1	0	Absolute position erase	ABS lost	
les	AL.30	0	0	0	1	Regenerative alarm	Reg. err	
coc	AL.31	0	1	0	1	Over speed	Overspeed	0
urm	AL.32	0	1	0	0	Over current	Overcurr.	0
Ala	AL.33	1	0	0	1	Over voltage	Overvolt.	0
	AL.35	1	1	0	1	Command pulse frequency alarm	Ref. f err	0
	AL.37	1	0	0	0	Parameter alarm	Pr. err	
	AL.42	0	1	1	0	Feedback alarm	Pos. err	0
	AL.45	0	0	1	1	Main circuit device overheat	Fin heat	0
	AL.46	0	0	1	1	Servo motor overheat	Motor heat	0
	AL.50	0	0	1	1	Over load 1	Overload1	
	AL.51	0	0	1	1	Over load 2	Overload2	
	AL.52	0	1	0	1	Error excessive	Over droop	0
	AL.77	1	1	1	1	H-T01board alarm	H-T01 error	
	AL.8D	0	0	0	0	CC-Link alarm	CC-link er	0
	AL.8E	0	0	0	0	RS-232C alarm	RS232 err	0
	AL.8F	1	0	0	0	RS-422 alarm	RS422 err	0

\setminus	Indication	(Note) Alarm code RX7 RX6 RX5 RX4		ode RX4	Function name	Parameter unit screen display	Alarm deactivation	
	AL.90					Zeroing incomplete	ORG error	Ν
	AL.92					Open battery cable warning	BTT cable] \
	AL.96					Zero setting error	ZEROset er	
ŝ	AL.9D	1			CC-Link warning	CC-link er		
ode	AL.9F			Battery warning	BTT volt			
ting c	AL.E0				Excessive regenerative load warning	OR warning		
Varr	AL.E1	E1			Over load warning	OL warning		
2	AL.E3			Absolute position counter warning	ABS warning			
	AL.E6				Servo forced stop	EMG stop] \	
	AL.E9					Main circuit off warning	Main P-off	

11.4.2 Remedies for alarms

 When any alarm has occurred, eliminate its cause, ensure safety, then reset the
alarm, and restart operation. Otherwise, injury may occur.
 If an absolute position erase alarm (AL.25) occurred, always make home position
setting again. Otherwise, misoperation may occur.

When an alarm occurs, the trouble signal switches off and the dynamic brake operates to stop the servo motor. At this time, the display shows the corresponding alarm number.

Remove the cause of the alarm in accordance with this section. The optional Parameter Unit may be used to refer to the cause.

			Parameter unit s	creen display		
Indication	Name	Definition	Current alarm	Alarm occurrence	Cause	Action
			(name and definition)	factor		
AL.10	Undervoltage	Power supply	Under volt	Power Volt	1. Power supply voltage is low.	Review the power
		voltage dropped.		under 160V		supply.
		160V or less		15ms IPF	2. Power failed instantaneously.	
					In case of MR-H700TN or less	
					: 15ms or more	
					In case of MR-HIIKTN or more	
					: 10ms or more	
				Insuf. Power	3. Shortage of power supply capacity	
				capacity	caused the power supply voltage to	
					drop at start, etc.	
				\backslash	4. Power was restored after the bus	
					Voltage had dropped to 200VDC.	
					within 5s after it had switched off)	
					5 Faulty parts in the serve amplifier	Change the Serve
					5. Faulty parts in the serve amplifier	amplifier
					Alarm (AL, 10) occurs if power is	umphilton
					switched on after CN1, CN3	
					connectors are disconnected.	
				│\		
AL.12	Memory	RAM, ROM	Memory er1	Board error	Faulty parts in the servo amplifier	Change the Servo
	alarm 1	memory fault			Checking method	amplifier.
AL.13	Clock alarm	Printed board	OSC err		Alarm (any of AL.12 to 15) occurs	
		fault			if power is switched on after CN1,	
AL.14	Watch dog	CPU fault	Watch dog		CN3 connectors are disconnected.	
AL.15	Memory	EEPROM fault	Memory er2			
	alarm 2	-				
AL.16	Encoder	Communication	PLG err 1	PLG con. left	1. Encode connector disconnected.	Connect correctly.
	alarm	error occurred		PLG trouble	2. Encoder faulty.	Change the servo
		between encoder				motor.
		and controller.		PLG cable	3. Encoder cable faulty	Repair or change the
				has trouble	(wire breakage or short)	cable.

			Parameter unit s	creen display		
Indication	Name	Definition	Current alarm	Alarm occurrence	Cause	Action
			(name and definition)	factor		
AL.17 AL.19	Board alarm Memory alarm 3	CPU/parts fault Flash ROM fault	Board err Memory er3	Board error Board error	Faulty parts in the servo amplifier Checking method Alarm (AL.17 or AL.19) occurs if power is switched on after CN1, CN3 connectors have been disconnected.	Change the servo amplifier.
AL.1A	Motor combination erase	Motor combination error	Motor err.	Motor err.	When using HC-MF, HA-FF, HC-SF, HC-RF or HC-UF series servo motor, improper motor was connected with controller.	Use correct combination.
AL.20	Encoder	Communication	PLG err 2	PLG con. left	1. Encoder connector disconnected.	Connect correctly.
	alarm 2	error occurred between encoder and servo amplifier.		PLG cable has trouble	2. Encoder cable faulty (wire breakage or short)	Repair or change the cable.
AL.24	Ground fault	Servo motor outputs (U, V, W phases) of	Grounded	UVW ground fault	1. Contact of power supply input cables and servo motor outputs in main circuit terminal block.	Correct wiring.
		servo amplifier resulted in ground fault.			2. Sheathes of servo motor power cables deteriorated, resulting in ground fault.	Change cables.
					3. Main circuit of servo amplifier failed. Checking method AL.24 occurs if the servo is switched on after disconnecting the U, V, W power cables from the servo amplifier.	Change servo amplifier.
AL.25	Absolute position erase	Absolute position data in error	ABS lost	Power trset after 2-3 min. pow. on	1. Reduced voltage of super capacitor in encoder	After leaving the alarm occurring for a few minutes, switch power off, then on again. Always make home position setting again.
				BTT life time over	2. Battery voltage low	Change battery. Always make home
				BTT cable has trouble	3. Battery cable or battery is faulty.	position setting again.
		Power was switched on for the first time in the absolute position detection system.			4. Super capacitor of the absolute position encoder is not charged	After leaving the alarm occurring for a few minutes, switch power off, then on again. Always make home position setting again

			_			
Indication	Name	Definition	Parameter unit s Current alarm (name and definition)	creen display Alarm occurrence factor	Cause	Action
AL.30	Regenerative	Permissible	Reg. err	Pr. 2 missetting	1. Wrong setting of parameter No. 2	Set correctly.
	alarm	regenerative	0	Reg. Resist.	2. Built-in regenerative brake resistor	connect correctly.
		power of the		Missing	or regenerative brake option is not	··· ··· ··· ··· ··· ··· ··· ··· ··· ··
		built in		0	connected.	
		regenerative		Reg. Load	3. High-duty operation or continuous	1. Reduce the
		brake resistor		exceeded	regenerative operation caused the	frequency of
		or regenerative			permissible regenerative power of	positioning.
		brake option is			the regenerative brake option to be	2. Use the
		exceeded.			exceeded.	regenerative
					Checking method	brake option of
					Call the status display and check	larger capacity.
					the regenerative load ratio.	5. Reduce the load.
				\sim	Power supply voltage is abnormal.	Review power supply
					260V or more	1 11 5
		Regenerative		Reg. Tr.	5. Regenerative transistor faulty.	Change the servo
		transistor fault		damaged	Checking method ———	amplifier.
					1) The regenerative brake option	
					has overheated abnormally.	
					2) The alarm occurs even after	
					removal of the built-in	
					regenerative brake option	
				Reg. Resist.	6. Built-in regenerative brake resistor	Change servo
				has trouble	or regenerative brake option faulty.	amplifier or regene-
		Casling for stor		<	7 Hannahart das te coline for	rative brake option.
		Cooling fan stop		\backslash	7. Unusual overheat due to cooling fan	1. Change the servo
					stop	cooling fan
						2. Reduce ambient
						temperature.
AL.31	Over speed	Speed has	Overspeed	Acc. time-C	1. Small acceleration/deceleration time	Increase
		exceeded the		shortage	constant caused overshoot to be	acceleration/decelera-
		instantaneous			large.	tion time constant.
		permissible		Overshoot	2. Servo system is instable to cause	1. Reset servo gain to
		speed.		by unstable	overshoot.	proper value.
						2. If servo gain
						cannot be set to
						1) Reduce load
						inertia moment
						ratio; or
						2) Reexamine
						acceleration/
						deceleration
				D. 1	0 December 1 - difference	time constant.
				Pr. 1 missetting	3. Parameter No. 1 Setting error.	Set correctly.
				PLG trouble	4 Encoder faulty	Change the servo
				i Ed trouble	. Encoder hunty.	motor.
AL.32	Over current	Current that	Overcurr.	UVW short	1. Short occurred in controller output	Correct the wiring.
		flew is higher		circuit	phases U, V and W.	-
		than the		IPM damaged	2. Transistor (IPM) of the servo	Change the servo
	1	permissible			amplifier faulty.	amplifier
		current of the			Checking method	
	1	controlier.			switched on after U V and W	
	1				are disconnected.	
	1					
				UVW fault	3. Ground fault occurred in servo	Correct the wiring.
	1			Ext noise	A External noise caused the	Take noise
	1			Ext. noise	A. External noise taused the	suppression
	1				misoperate.	measures.

	T	T	Deremeter unit (arean diantau		1
Indication	Name	Definition	Current alarm (name and definition)	Alarm occurrence factor	Cause	Action
AL.33	Over voltage	Converter bus voltage exceeded 400V.	Overvolt.	Reg. resist. Missing	 Lead of built-in regenerative brake resistor or regenerative brake option is open or disconnected. 	 Change lead. Connect correctly.
				Reg. Tr. damaged	2. Regenerative transistor faulty.	
				Reg. Resist. has trouble	3. Wire breakage of built-in regenerative brake resistor or regenerative brake option	 For wire breakage of built-in regenerative brake resistor, change servo amplifier. For wire breakage of regenerative brake option, change regenerative brake option.
				Power volt exceeded	4. Capacity of built-in regenerative brake resistor or regenerative brake option is insufficient.	Add regenerative brake option or increase capacity.
					5. Power supply voltage high.	Review the power supply.
AL.35	Command pulse frequency alarm	Input pulse frequency of the manual pulse generator is too	Ref. f err	Ref. pulse f exceeded	1. Command pulse frequency too high.	Change the command pulse frequency to a proper value.
		high.		Ref. pulse has noise	2. Noise entered the command pulse.	Take action against noise.
					3. Manual pulse generator faulty.	Change the manual pulse generator.
AL.37	Parameter alarm	Parameter setting is wrong.	Pr. err	Pr. data destroyed	1. Servo amplifier fault caused the parameter setting to be rewritten.	Change the servo amplifier.
				Pr.□□err.	2. Parameter data mis-setting	Set parameter correctly.
				Ps. □□err.	3. Position block data mis-setting	
				Spd. □□ err.	4. Speed block data mis-setting	
AL.42	Feedback alarm	Encoder signal is faulty.	Pos. err	PLG trouble	Encoder faulty.	Change the servo motor.
AL.45	Main circuit device	Main circuit device overheat	Fin heat	Overload	1. Servo amplifier faulty.	Change the servo amplifier.
	overheat			Amb. temp. over 55°C	2. The power supply was turned on and off continuously by overloaded status.	The drive method is reviewed.
				Amp. Cooling trouble	3. Air cooling fan of controller stops.	The cooling method is reviewed.
AL.46	Servo motor overheat	Servo motor temperature rise actuated the thermal	Motor overheat	Motor amb. over 40°C	1. Ambient temperature of servo motor is over 40°C.	Review environment so that ambient temperature is 0 to 40°C.
		protector.		Overload	2. Servo motor is overloaded.	 Reduce load. Review operation pattern. Use servo motor that provides larger output.
				PLG-TH trouble	3. Thermal protector in encoder is faulty.	Change servo motor.
				Motor cool trouble	4. Air cooling fan of the servo motor stops.	Change servo motor.

			Parameter unit s	creen display		
Indication	Name	Definition	Current alarm (name and definition)	Alarm occurrence factor	Cause	Action
AL.50	Over load 1	Load exceeded overload protection characteristic of servo amplifier.	Overload1	E-thermal tripped	 Servo amplifier is used in excess of its continuous output current. 	 Reduce load. Review operation pattern. Use servo motor that provides larger output.
		2.5s or more Load ratio 200%: 100s or more		Mot. Vibrate. by unstable	2. Servo system is instable and hunting.	 Repeat acceleration/ deceleration to execute auto tuning. Change auto tuning response setting. Set auto tuning to OFF and make gain adjustment manually.
				Machine locked	3. Machine struck something.	 Review operation pattern. Install limit switches.
				UVW miswire	 Wrong connection of servo motor. Servo amplifier's output terminals U, V, W do not match servo motor's input terminals U, V, W. 	Connect correctly.
				PLG trouble	5. Encoder faulty. Checking method — When the servo motor shaft is rotated slowly with the servo off, the cumulative feedback pulses should vary in proportion to the rotary angle. If the indication skips or returns midway, the encoder is faulty.	Change the servo motor.
AL.51	Over load 2	Machine collision or the like caused max.	Overload2	Machine locked	1. Machine struck something.	 Review operation pattern. Install limit switches.
		output current to flow successively for several seconds. Servo motor locked: 1s or more	current sively for seconds. notor 1s or more	UVW miswire	 Wrong connection of servo motor. Servo amplifier's output terminals U, V, W do not match servo motor's input terminals U, V, W. 	Connect correctly.
				Mot. Vibrat. by unstable	3. Servo system is instable and hunting.	 Repeat acceleration/ deceleration to execute auto tuning. Change auto tuning response setting. Set auto tuning to OFF and make gain adjustment manually.
				Dc-bus low	 The bus voltage of the unit has decreased. 	Change the servo amplifier.
				PLG trouble	5. Encoder faulty. Checking method — When the servo motor shaft is rotated slowly with the servo off, the cumulative feedback pulses should vary in proportion to the rotary angle. If the indication skips or returns midway, the encoder is faulty.	Change the servo motor.

			Parameter unit s	creen display		
Indication	Name	Definition	Current alarm	Alarm occurrence	Cause	Action
AL.52	Error excessive	Droop pulse value of the deviation	Over droop	Acc. time-c shortage	1. Acceleration/deceleration time constant is too small.	Increase the acceleration/decele- ration time constant
		counter exceeded 80k		Start torque missing	2. Torque limit value (parameter No.40) is too small.	Increase the torque limit value.
		pulses.			3. Motor cannot be started due to torque shortage caused by power supply voltage drop.	 Review the power supply capacity. Use servo motor which provides larger output.
				Pr. 7 shortage	4. Position control gain 1 (parameter No.7) value is small.	Increase set value and adjust to ensure proper operation.
				Machine locked	5. The bus voltage of the unit due to the breakdown.	Change the servo amplifier.
				Rotated by ext. force	6. Servo motor shaft was rotated by external force.	 When torque is limited, increase the limit value. Reduce load. Use servo motor that provides larger output.
				DC-bus low	7. Machine struck something.	 Review operation pattern. Install limit switches.
				PLG trouble	8. Encoder faulty.	Change the servo motor
					 Wrong connection of servo motor. Servo amplifier's output terminals U, V, W do not match servo motor's input terminals U, V, W. 	Connect correctly.
AL.77	H-T01 board alarm	Printed circuit board H-T01	H-T01 error	H-T01 left	1. Printed circuit board H-T01 is disconnected.	Repair or change the servo amplifier.
		raulty		H-101 trouble	2. Printed circuit board H-101 has failed.	
AL.8D	CC-Link alarm	Communication with master	CC-link er	Station no. missetting	1. Station number switch setting is 0 or 65 or more.	Set the correct station number (1 to 64).
		station cannot be made		Baudrate missetting	2. Baudrate switch setting is 5 or more.	Set the correct baudrate (0 to 4).
		normally.		CC-link CBL	3. Cable connection wrong	Check wiring.
				has trouble	4. Cable fault	Repair or change the cable.
					5. CC-Link connector is unplugged.	Make proper connection.
AL.8E	RS-232C alarm	Serial communication	RS232 err	RS232 comm. error	1. Encoder cable faulty. (write breakage or short)	Repair or change the cable.
		error occurred between servo amplifier and communication device (parameter unit, personal computer or similar device).			2. Telecommunications equipment faulty.	Change the telecommunication equipment.
AL.8F	RS-422 alarm	Serial communication	RS422 err	RS422 comm.	1. The connection is defective with the external digital display	Wiring is repaired.
		error occurred between servo amplifier and communication device (parameter unit, personal computer or similar device).			2. External digital display faulty.	Change the external digital display.

11.4.3 Remedies for warnings

Occurrence of a warning does not lead to a servo off status. However, if operation is continued with the warning occurring, an alarm may occur or normal operation not performed.

Eliminate the cause of the warning according to this section. Use the operation parameter unit to refer to the cause of warning.

			Parameter unit screen display			
Indication	Name	Definition	Current alarm	Alarm occurrence	Cause	Action
			(name and definition)	factor		
AL.90	Zero setting error	In incremental system: 1. Positioning operation was performed without zeroing. 2. Zeroing ended abnormally.	ORG error	ORG return missetting	 Positioning operation was performed without zeroing. Zeroing speed could not be reduced to creep speed. Limit switch was actuated due to zeroing made from other than the position beyond the dog. 	 Perform zeroing. Reconsider zeroing speed/creep speed.
		In absolute position detection system 1. Positioning operation was performed without home position setting. 2. Home position setting ended abnormally.			 Positioning operation was performed without home position setting. Home position setting speed could not be reduced to creep speed. Limit switch was actuated due to home position setting made from other than the position beyond the dog. 	 Make home position setting. Reconsider home position setting speed/creep speed.
AL.92	Open battery	Absolute	BTT cable	BTT cable has	1. Battery cable is open.	Repair cable or
	cable warning	position		trouble BTT voltage low		changed.
		system battery voltage is low.		DTT voltage low	2. Battery voltage dropped to 2.8V or less.	Change battery.
AL.96	Zero setting error	 In incremental system: Zeroing could not be made. In absolute position detection system: Zero setting could not be made. 	ZEROset er	Ref. P input after CR on Out of imposition	Droop pulses remaining are greater than the in-position range setting.	Remove the cause of droop pulse occurrence
AL.9D	CC-link warning	Station number switch or baudrate switch	CC-link er	Station No. changed	1. Station number switch setting was changed after power-on.	Return it to the setting before power- on.
		setting was changed after power-on.		Baudrate SW. changed	2. Baudrate switch setting was changed after power-on.	Return it to the setting before power- on.
AL.9F	Battery warning	Voltage of battery for absolute position detection system reduced.	BTT volt	BTT voltage low	Battery voltage fell to 3.2V or less.	Change the battery.

			Parameter unit screen display			
Indication	Name	Definition	Current alarm	Alarm occurrence	Cause	Action
			(name and definition)	factor		
AL.E0	Excessive regenerative load warning	There is a possibility that regenerative power may exceed permissible regenerative power of built-in regenerative brake resistor or regenerative brake option.	OR warning	Reg. Load over 85% of alarm	Regenerative power increased to 85% or more of permissible regenerative power of built-in regenerative brake resistor or regenerative brake option. Checking method Call the status display and check regenerative load ratio.	 Reduce frequency of positioning. Change regenerative brake option for the one with larger capacity. Reduce load.
AL.E1	Over load warning	There is a possibility that overload alarm 1 or 2 may occur.	OL warning	Load over 85% of alarm	Load increased to 85% or more of overload alarm 1 or 2 occurrence level. Checking method Refer to AL.50, 51.	Refer to AL.50, AL.51.
AL.E3	Absolute position counter warning	Absolute position encoder pulses faulty.	ABS warning	PLG trouble by noise	Noise entered the encoder. Encoder faulty	Take noise suppression measures. Change serve motor
AL.E6	Servo forced stop	EMG-SG are open.	EMG stop	EMG off	External forced stop was made valid. (EMG-SG opened.)	Ensure safety and deactivate forced stop.
AL.E9	Main circuit off warning	Servo was switched on with main circuit power off.	Main P-off	Main power down while SON-on		Switch on main circuit power.

11.4.4 RS-232C communication error

When a communication fault occurs between the servo amplifier and parameter unit, any of the following errors is displayed on the screen of the parameter unit. In this case, switch the power off, take the corresponding action, and switch the power on.

Screen display	Error definition	Cause	Corrective action
COMMUNICATION	A fault occurred in communication between the	1. Parameter unit cable or communication cable	1. Connect properly.
ERROR	servo amplifier and parameter	connection fault	
	unit during servo operation.	2. Parameter unit cable or	2. Change the cable.
SEDVO CDU	Communication cannot be made	communication cable snapping	
	at power-on between the servo	3. Servo amplifier faulty.	3. Change the servo amplifier.
ERROR	amplifier and parameter unit.	4. Parameter unit faulty.	4. Change the parameter unit.
DDUMEMODY	Parameters cannot be copied	Memory (EEPROM) in the	Change the parameter unit.
PRU MEMORI	from the servo amplifier to the	parameter unit faulty.	
ERRUR	parameter unit.		

11.5 Clearing the alarm history

The parameter unit can be used to confirm an alarm history. The servo amplifier stores one current alarm and nine past alarms which occurred since it had been switched on first. Before starting operation, clear the alarm history so that you can control alarms which may occur during the operation.

12. OUTLINE DIMENSIONAL DRAWINGS

12.1 Servo amplifiers

MR-H10TN(-UE) to MR-H60TN(-UE)

MR-H ⊡ TN	MR-HIDTN-UE
Terminal screw: M4 Te	P C N L1 L2 L3 L11 L21 U V W (Note) Chassis

MR-H100TN(-UE)

Terminal	block TE1	
MR-H□TN	MR-H□TN-UE	
Terminal screw: M4	Terminal screw: M4	
P C N R S T R1 S1 U V W H-	P C N L1 L2 L3 L11 L21 U V W (Note) Chassis	

MR-H200TN(-UE) • MR-H350TN(-UE)

Terminal	block TE1	
MR-H□TN	MR-H□TN-UE	
MR-H□TN Terminal screw: M4 P C N R S T R1 S1 U V W ±=	MR-HDTN-UE Terminal screw: M4 P C N L1 L2 L3 L11 L2 L3 L11 U V W Chassis Image: Comparison of the second	
	Note. Reep it open.	

Fan

Bottom view

Weight: 4.4kg (9.7lb)

MR-H500TN(-UE) • MR-H700TN(-UE)

MR-H11KTN(-UE)

Terminal screw: M4 TE1

 L1
 L2
 L3
 U
 V
 W
 P
 C
 N
 Image: Second constraints

 Terminal screw:
 M5

 PE

MR-H15KTN(-UE) • MR-H22KTN(-UE)

÷.

PE
- 12.2 Connectors
- (1) Servo amplifier side connector <Honda Tsushin Kogyo make>

Number of size	Model		
Number of pins	Connector	Case	
50	PCR-S50FS (soldering type)		
50	PCR-S50F (insulation displacement type)	PCR-LS50LAI	

Crimping terminal: FHAT-002A

Note: PCR-S50F is not an option and is to be supplied by the customer.

Number of size	Model			
Number of pins	Connector	Case		
50	PCR-S20FS (soldering type)	PCR-LS20LA1		
50	PCR-S20F (insulation displacement type)	PCR-LS20LA1W		

Crimping terminal: FHAT-002A

Note: PCR-S20F and PCR-LS20LA1W are not options and are to be supplied by the customer.

<Nippon AMP make>

• Contactor model: 170262-2 (chain type) 170204-2 (loose type) [Unit: mm]

Applicable wire range AWG: 30-26 (0.05 to 0.15mm²) Contactor caulking hand tool Model: 722561-1

- (2) Connector for conversion connector
 - Signal connector
 - <Sumitomo 3M make>

Type

Connector: 10120-3000VE Shell kit: 10320-52F0-008

(3) Conversion connector

13. CHARACTERISTICS

13.1 Overload protection characteristics

An electronic thermal relay is built in the servo amplifier to protect the servo motor and servo amplifier from overloads. The operation characteristics of the electronic thermal relay are shown below.

Overload 1 alarm (AL.50) occurs if overload operation performed is above the electronic thermal relay protection curve shown below. Overload 2 alarm (AL.51) occurs if the maximum current flew continuously for several seconds due to machine collision, etc. Use the equipment on the left-hand side area of the continuous or broken line in the graph.

In a machine like the one for vertical lift application where unbalanced torque will be produced, it is recommended to use the machine so that the unbalanced torque is 70% or less of the rated torque.

13. CHARACTERISTICS

- 13.2 Servo amplifier and generated loss
- (1) Amount of heat generated by the servo amplifier

Table 13.1 indicates servo amplifiers' power supply capacities and losses generated under rated load. For thermal design of an enclosure, use the values in table in consideration for the worst operating conditions. The actual amount of generated heat will be intermediate between values at rated torque and zero torque according to the duty used during operation. When the servo motor is run at less than the maximum speed, the power supply capacity will be smaller than the value in the table, but the servo amplifier's generated heat will not change.

Servo amplifier	Servo motor	(Note 1) Power supply capacity	(Note 2) Controller-generated heat [W]		Area required for heat dissipation	
-		[kVA]	At rated torque	With servo off	[m ²]	[ft ²]
	HC-KF053 • 13	0.3	40	30	0.8	8.6
MR-H10TN	HA-FF053 • 13	0.3	40	30	0.8	8.6
	HC-UF13	0.3	40	30	0.8	8.6
	HC-KF23	0.5	40	30	0.8	8.6
MR-H20TN	HC-MF053 • 13	0.3	40	30	0.8	8.6
	HA-FF23	0.5	40	30	0.8	8.6
	HC-KF43	0.9	55	30	1.0	10.8
	HC-MF23	0.5	40	30	0.8	8.6
MR-H40TN	HA-FF33	0.7	50	30	0.9	9.7
	HA-FF43	0.9	50	30	0.9	9.7
	HC-UF23	0.5	40	30	0.8	8.6
	HC-MF43	0.9	55	30	1.0	10.8
	HA-FF63	1.1	55	30	1.0	10.8
MR-H601N	HC-SF52 • 53	1.0	55	30	1.0	10.8
	HC-UF43	0.9	55	30	1.0	10.8
	HC-MF73	1.3	65	30	1.2	12.9
	HC-SF81	1.5	65	30	1.2	12.9
MR-HIUUIN	HC-SF102 • 103	1.7	65	30	1.2	12.9
	HC-UF72 • 73	1.3	65	30	1.2	12.9
	HC-SF121	2.1	105	35	2.0	21.5
	HC-SF152 • 153	2.5	105	35	2.0	21.5
	HC-SF201 • 202 • 203	3.5	105	35	2.0	21.5
MR-H2001N	HC-RF103	1.7	105	35	2.0	21.5
	HC-RF153	2.5	105	35	2.0	21.5
	HC-UF152	2.5	105	35	2.0	21.5
	HC-SF301	4.8	145	35	2.7	29.1
MD LI250TN	HC-SF352 • 353	5.5	145	35	2.7	29.1
MR-H35011N	HC-RF203	3.5	135	35	2.5	26.9
	HC-UF202	3.5	145	35	2.7	29.1
	HC-SF502	7.5	210	40	4.0	43.1
	HC-RF353	5.5	145	35	2.7	29.1
MR-H500TN	HC-RF503	7.5	210	40	4.0	43.1
	HC-UF352	5.5	210	40	4.0	43.1
	HC-UF502	7.5	210	40	4.0	43.1
MR-H700TN	HC-SF702	10.0	320	45	6.0	64.6
MR-H11KTN	HA-LH11K2	16	540	57	10.0	107.6
MR-H15KTN	HA-LH15K2	22	660	68	13.0	139.9
MR-H22KTN	HA-LH22K2	33	870	82	16.0	172.2

Table 13.1 Power Supply Capacity and Generated Heat Per one axis at Rated Output

Note: 1. Note that the power supply capacity varies according to the power supply impedance.

2. Heat generated during regeneration is not included in the controller-generated heat. To calculate heat generated by the regenerative brake option, use Equation 14.1 in Section 14.1.2.

(2) Heat dissipation area for an enclosed control box for servo amplifier

An enclosed control box for the servo amplifier (control box) should be designed to operate at the ambient temperature of 40°C ($104^{\circ}F$) within a temperature rise of 10°C ($50^{\circ}F$). (With a 5°C ($41^{\circ}F$) safety margin, the system should operate within a maximum 55°C ($131^{\circ}F$) limit.) The necessary control box heat dissipation area can be calculated by Equation 14.1:

$$A = \frac{P}{K \cdot \Delta T}$$
where, A : Heat dissipation area [m²] (13.1)

- P : Loss generated in the control box [W]
- ΔT : Difference between internal and ambient temperatures [°C]
- K : Heat dissipation coefficient [5 to 6]

When calculating the heat dissipation area with Equation 13.1, assume that P is the sum of all losses generated in the control box. Refer to Table 13.1 for heat generated by the servo amplifier. "A" indicates the effective area for heat dissipation, but if the control box is directly installed on an insulated wall, that extra amount must be added to the control box's surface area.

The required heat dissipation area will vary wit the conditions in the enclosure. If convection in the control box is poor and heat builds up, effective heat dissipation will not be possible. Therefore, arrangement of the equipment in the enclosure and the use of a fan should be considered.

Table 13.1 lists the control box dissipation area for each controller when the servo amplifier is operated at the ambient temperature of 40° C (104° F) under rated load.

Fig. 13.1 Temperature Distribution in control box

When air flows along the outer wall of the control box, effective heat exchange will be possible, because the temperature slope inside and outside the control box will be steeper.

(3) Fitting of the servo amplifier (MR-H200TN or more)

When mounted with the heat sink outside mounting attachment (option), the servo amplifier can dissipate generated loss directly to the outside of a control box. This method can reduce the heat dissipation area of the control box since 45 to 55% of the generated loss given in Table 13.1 is dissipated to the outside of the control box. For details of the heat sink outside mounting attachment, refer to Section 14.1.9.

13.3 Dynamic brake characteristics

When an alarm, forced stop or power failure occurs, the dynamic brake is operated to bring the servo motor to a sudden stop. Fig. 13.2 shows the pattern in which the servo motor comes to a stop when the dynamic brake is operated. Use Equation 13.2 to calculate an approximate coasting distance to a stop. The dynamic brake time constant τ varies with the servo motor and machine operation speeds. (Refer to Fig. 13.3 and Table 13.5.)

Lmax	$=\frac{V_0}{60} \cdot \left\{ te + \tau \left[1 + \frac{JL}{JM} \right] \right\} \dots (13.2)$
L max	: Maximum coasting distance
V0	: Machine rapid feedrate[mm/min][in/min]
ЈМ	: Servo motor inertia moment
JL	: Load inertia moment converted into equivalent value on servo motor shaft [kg • cm ²][oz • in ²]
τ	: Brake time constant (Fig. 13.3 • Table 13.4)
te	: Delay time of control section (Fig. 13.2)[s]
	(There is internal relay delay time of about 30ms.)

a. HA-LH Series Fig. 13.3 Dynamic Brake Time Constant 1

[Dynamic brake's permissible load inertia moment]

If the dynamic brake is operated at the load inertia moment above the corresponding value indicated in the following list, the brake resistor in the servo amplifier (external brake resistor for 11kW or more) may burn out. If the value is exceeded, contact us.

Servo amplifier	JL/JM	
MR-H10TN to MR-H100TN	30 times	
MR-H200TN	20 times	
MR-H350TN to MR-H700TN	10 times (Note)	
MR-H11KTN to MR-H22KTN	30 times	

Note: 15 times for the HC-SF series.

13.4 Encoder cable flexing life

The flexing life of the cables is shown below. Provide a little allowance for values.

Note: This graph gives calculated values. They are not guaranteed values.

14. OPTIONS AND AUXILIARY EQUIPMENT

fault or fire.

	 Before connecting any option or auxiliary equipment, make sure that the charge lamp is off more than 10 minutes after power-off, then confirm the voltage with a tester or the like. Otherwise, you may get an electric shock.
_	
	 Use the specified auxiliary equipment and options. Unspecified ones may lead to a foult or fire.

14.1 Options

14.1.1 Parameter unit

One parameter unit (MR-PRU01A) is required to use this servo amplifier. It displays parameter settings, test operation and alarms. Use it with the parameter unit cable (MR-PRUCBLIM).

(1) Outline drawing

Note: The length of the mounting screw selected should not exceed the effective depth of the parameter unit mounting screw.

(2) Panel cutting dimensions

The following dimensions assume that the parameter unit is installed on a panel or the like.

(3) Parameter unit cable

Used for connection of the parameter unit and servo amplifier.

Model: MR-PRUCBL

Ī	Sy	mbol	Cable length [m (ft.)]
		1	1 (3.281)
ſ		3	3 (9.843)
ſ		5	5 (16.404)

[Unit: mm (in.)]

14.1.2 Regenerative brake options

```
• The specified combinations of regenerative brake options and servo amplifiers may only be used. Otherwise, a fire may occur.
```

(1) Combination and regenerative power

The regenerative power values listed below are not the permissible power values of the resistors.

	Regenerative power [W]					
Servo amplifier	Built-in regenerative	MR-RB013	MR-RB033	MR-RB32	MR-RB34	(Note) MR-RB54
	brake resistor	[52 Ω]	[52Ω]	[40Ω]	[26Ω]	[26 Ω]
MR-H10TN	None	10	30			
MR-H20TN	None	10	30			
MR-H40TN	50			300		
MR-H60TN	50			300		
MR-H100TN	80			300		
MR-H200TN	80				300	500

Note: Always install a cooling fan.

		Rege	nerative power	[W]	
Servo amplifier	Built-in regenerative	MR-RB30	MR-RB31	MR-RB50	(Note) MR-RB51
	brake resistor	[13Ω]	[6.7 Ω]	[13Ω]	[6.7 Ω]
MR-H350TN	130	300		500	
MR-H500TN	130	300		500	
MR-H700TN	170		300		500

Note:Always install a cooling fan.

	Regenerative power [W]				
Servo amplifier	(Note) External regenerative	MR-RB65	MR-RB66	MR-RB67	
	brake resistor (Accessory)	[8 Ω]	[5Ω]	[4Ω]	
MR-H11KTN	500 (800)	500 (800)			
MR-H15KTN	850 (1300)		850 (1300)		
MR-H22KTN	850 (1300)			850 (1300)	

Note:Values in parentheses assume the installation of a cooling fan.

(2) Selection of the regenerative brake option

(a) Simple selection method

In horizontal motion applications, select the regenerative brake option as described below: When the servo motor is run without load in the regenerative mode from the running speed to a stop, the permissible duty is as indicated in Section 5.1 of the separately available Servo Motor Instruction Manual. For the servo motor with a load, the permissible duty changes according to the inertia moment of the load and can be calculated by the following formula:

Permissible duty = Permissible duty for servo motor with no load (value indicated in Section 5.1 of the Servo Motor Instruction Manual) (m+1)

$$\times \left(\frac{\text{rated speed}}{\text{Running speed}}\right)^2 \text{[times/min]}$$

m = load inertia moment/servo motor inertia moment

From the permissible duty, find whether the regenerative brake option is required or not. Permissible duty < number of positioning times [times/min]

Select the regenerative brake option out of the combinations in (1) in this section.

(b) To make selection according to regenerative energy

Use the following method when regeneration occurs continuously in vertical motion applications or when it is desired to make an in-depth selection of the regenerative brake option:

1) Regenerative energy calculation

Use the following table to calculate the regenerative energy.

Regenerative power	Torque applied to serve	vo motor [N · m]	Energy [J]
1)	$T_1 = \frac{(J_L + J_M) \cdot N_0}{9.55 \times 10^4} \cdot \frac{1}{T_{Psa1}} + T_U + T_F $		$E_1 = \frac{0.1047}{2} \cdot N_0 \cdot T_1 \cdot T_{Psa1}$
2)	$T_2 = T_U + T_F$		E2= 0.1047 • No • T2 • t1
3)	$T_{3} = \frac{(J_{L} + J_{M}) \cdot N_{0}}{9.55 \times 10^{4}} \cdot \frac{1}{T_{Psd1}}$	-+TU+TF	$E_3 = \frac{0.1047}{2} \cdot N_0 \cdot T_3 \cdot T_{Psd1}$
4), 8)	T4=TU		E₄≥0 (No regeneration)
5)	$T_5 = \frac{(JL + JM) \cdot No}{9.55 \times 10^4} \cdot \frac{1}{T_{Psa2}}$	Tu+Tf 2	$E_5 = \frac{0.1047}{2} \cdot N_0 \cdot T_5 \cdot T_{Psa2}$
6)	$T_6 = T_U + T_F$		E6= 0.1047 • No • T6 • t3
7)	$T_7 = \frac{(J_L + J_M) \cdot N_0}{9.55 \times 10^4} \cdot \frac{1}{T_{Psd2}}$	Tu+TF	$E_7 = \frac{0.1047}{2} \cdot N_0 \cdot T_7 \cdot T_{Psd2}$
Sum total of regen	nerative energies Es	Sum total of n	egative energies in 1) to 8) Es

Formulas for Calculating Torque and Energy in Operation

2) Losses of servo motor and servo amplifier in regenerative mode

The following table lists the efficiencies and other data of the servo motor and servo amplifier in the regenerative mode.

Servo amplifier	Inverse efficiency [%]	Capacitor charging [J]
MR-H10TN	55	9
MR-H20TN	70	9
MR-H40TN	85	9
MR-H60TN	85	9
MR-H100TN	85	15
MR-H200TN	85	25

Servo amplifier	Inverse efficiency [%]	Capacitor charging [J]
MR-H350TN	90	30
MR-H500TN	90	45
MR-H700TN	90	70
MR-H11KTN	90	120
MR-H15KTN	90	180
MR-H22KTN	90	250

Inverse efficiency (η)

:Efficiency including some efficiencies of the servo motor and servo amplifier

when rated (regenerative) torque is generated at rated speed. Since the efficiency varies with the speed and generated torque, allow for about 10%.

Capacitor charging (Ec) : Energy charged into the electrolytic capacitor in the servo amplifier.

Subtract the capacitor charging from the result of multiplying the sum total of regenerative energies by the inverse efficiency to calculate the energy consumed by the regenerative brake option.

 $ER [J] = \eta \cdot Es - Ec$ Calculate the power consumption of the regenerative brake option on the basis of single-cycle operation period tf [s] to select the necessary regenerative brake option. PR [W] = ER/tf......(14.1)

(3) Parameter setting

When using the regenerative brake option, set parameter No.2 according to the regenerative brake option used.

(4) Connection of the regenerative brake option

When using the regenerative brake option, always remove the wiring of the built-in regenerative brake resistor connected across P-C and fit the regenerative brake option across P-C. The regenerative brake option will generate heat of about 100°C. Fully examine heat dissipation, installation position, used cables, etc. before installing the option. For wiring, use fire-retarding cables and keep them clear of the regenerative brake option body.

Always use twisted cables of max. 5m (16.404ft) length for connection with the servo amplifier.

(a) MR-H10TN • MR-H20TN

This servo amplifier does not have the built-in regenerative brake resistor.

(b) MR-H40TN to MR-H700TN

When any of the MR-RB50 to MR-RB54 is used, the regenerative brake option must be forcibly cooled by the cooling fan.

Note: When the MR-RB5 is used, cool it forcibly by the cooling fan (1.0 m^3 /min, about 92).

When the regenerative brake option is used, disconnect the cables from the regenerative brake resistor terminals (across C-P) in the servo amplifier and fix them to the area provided at the opposite side on the front cover as shown in the figure below.

For the MR-RB50, MR-RB51 or MR-RB54, install the cooling fan as shown.

(c) MR-H11KTN to MR-H22KTN(when using the supplied regenerative brake resistor) When using the regenerative brake resistors supplied to the servo amplifier, the specified number of resistors (4 or 5 resistors) must be connected in series. If they are connected in parallel or in less than the specified number, the servo amplifier may become faulty and/or the regenerative brake resistors burn. Install the resistors at intervals of about 70mm. Cool the resistors with fans (10m³/min, □92 ×2 units as reference) to increase the regenerative capability.

Note: The number of resistors connected in series depends on the resistor type.

Convo omalifion	Regenerative	Regenerativ	e power (W)		Number of
Servo ampliner	brake resistor	Normal	Cooling	Resistance (Ω)	resistors
MR-H11KTN	GRZG400-2Ω	600	800	8	4
MR-H15KTN	GRZG400-1Ω	600	1300	5	5
MR-H22KTN	GRZG400-0.8Ω	600	1300	4	5

(d) MR-H11KTN-P90 to MR-H22KTN-P90 (when using the regenerative brake option) Cooling the regenerative brake option with fans improves regenerative capability.

Configure up a circuit which shuts off main circuit power when thermal protector operates. Thermal protector Opens G3-G4 at 100±5°C.

Convo omplifion	Regenerative brake	Decister (O)	(Note) Regenerative power			
Servo amplifier	option model	Resistor (Ω)	Without fans	With fans		
MR-H11KTN	MR-RB65	8	500	800		
MR-H15KTN	MR-RB66	5	850	1300		
MR-H22KTN	MR-RB67	4	850	1300		

When using fans, install them using the mounting holes provided in the bottom of the regenerative brake option.

(5) Outline dimension drawings

	Regene-	Variable dimensions [mm(in)]									
	rative brake option	A	В	С	D	E	F	G	Н	J	Weight [kg(lb)]
1	MR-	110	101	85	18	35	16	4.5	18	3.2	0.1
	RB013	(4.331)	(3.979)	(3.346)	(0.709)	(1.378)	(0.63)	(0.177)	(0.709)	(0.126)	(0.22)
J	MR-	192	173	152	26	54	22	6	26	3.2	0.2
	RB033	(7.559)	(6.811)	(5.984)	(1.024)	(2.126)	(0.866)	(0.236)	(1.024)	(0.126)	(0.441)
★											

MR-RB30 • MR-RB31 • MR-RB32 • MR-RB34

[Unit : mm(in.)]

Regenerative	Weight
brake option	[kg(lb)]
MR-RB30	
MR-RB31	2.9
MR-RB32	(6.393)
MR-RB34	

MR-RB50 MR-RB51 MR-RB54

[Unit : mm(in.)]

Regenerative	Weight
brake option	[kg(lb)]
MR-RB50	5.0
MR-RB51	5.6 (19.246)
MR-RB54	(12.340)

[Unit:mm(in.)]

MR-RB65 • MR-RB66 • MR-RB67

[Unit : mm(in.)]

Regenerative	Weight
brake option	[kg(lb)]
MR-RB65	10(22.046)
MR-RB66	11(24.251)
MR-RB67	11(24.251)

GRZG400-2Ω • GRZG400-1Ω • GRZG400-0.8Ω (standard accessories)

[Unit : mm(in.)]

14.1.3 Brake unit

The brake unit is the integration of the regenerative control and resistor and is connected to the bus (across P-N) of the servo amplifier. As compared to the MR-RB regenerative brake option, the brake unit can return larger power. Hence, use the this brake unit when the MR-RB cannot provide sufficient regenerative brake capability.

(1) Connection example for use of brake unit

Note: 1. Make up the external sequence to switch the power off when an alarm occurs or when the thermal relay is actuated. 2. The cables of the resistor in the servo amplifier across P-C must be disconnected. 11kW or more does not contain the regenerative brake resistor.

The cables between the servo amplifier and brake unit and between the resistor unit and brake unit should be 5m (16.404ft) of less. The cables longer than 5m (16.404ft) should be twisted.

If twisted, the cables must not be longer than 10m (32.808ft).

The cable size should be equal to or larger than the recommended size. See the brake unit instruction manual. You cannot connect one set of brake unit to two servo amplifiers or two sets of brake units to one servo amplifier.

(2) Outside dimensions

· Brake unit (FR-BU)

[Unit : mm(in.)]

Note:Ventilation ports are provided in both side faces and top face. The bottom face is open.

Brake unit model	А	AA	В	BA	С	D	E	EE	к	F	Approx. weight [kg(lb)]
FR-BU-15K	100	60	240	225	128	6	18.5	6	48.5	7.5	2.4
	(3.937)	(2.362)	(9.446)	(10.039)	(5.039)	(0.236)	(0.728)	(0.236)	(1.909)	(0.295)	(5.291)
FR-BU-30K	160	90	240	225	128	6	33.5	6	78.5	7.5	3.2
	(6.299)	(3.543)	(9.446)	(10.039)	(5.039)	(0.236)	(1.319)	(0.236)	(3.091)	(0.295)	(7.055)
FR-BU-55K	265	145	240	225	128	/	58.5	6	/	7.5	5.8
	(10.433)	(5.709)	(9.446)	(10.039)	(5.039)		(2.303)	(0.236)		(0.295)	(12.787)

B±5 (0.197)

575)

Σ

• FR-BR-55K

Two eye bolts are provided

(as shown below).

• Resistor unit (FR-BR)

[Unit : mm(in.)]

Note:Ventilation ports are provided in both side faces and top face. The bottom face is open.

Resistor unit model	A	AA	В	BA	BB	С	D	Е	EE	к	F	Approx. weight [kg(lb)]
FR-BR-	170	100	450	432	410	220	6	35	6	1.6	20	15
15K	(6.693)	(3.937)	(17.717)	(17.008)	(16.142)	(8.661)	(0.236)	(1.378)	(0.236)	(0.063)	(0.787)	(66.139)
FR-BR-	340	270	600	582	560	220	10	35	10	2	20	30
30K	(11.389)	(10.63)	(23.622)	(22.913)	(22.047)	(8.661)	(0.394)	(1.378)	(0.394)	(0.079)	(0.787)	(33.069)
FR-BR-	480	410	700	670	620	450	12	35	12	3.2	40	70
55K	(18.898)	(16.142)	(27.559)	(26.378)	(24.409)	(17.717)	(0.472)	(1.378)	(0.472)	(0.126)	(1.575)	(154.323)

POINT

- The brake unit and resistor unit of other than 200V class are not applicable to the servo amplifier.
- The brake unit and resistor unit of the same capacity must be combined. The units of different capacities may result in damage.
- The brake unit and resistor unit must be installed on a vertical surface in the vertical direction. If they are installed in the horizontal direction or on a horizontal surface, a heat dissipation effect reduces.
- The temperature of the resistor unit casing rises to higher than 100°C. Do not cause cables and combustibles to make contact with the casing.

14.1.4 Power return converter

(1) Selection

The characteristics in the figure are common to all units of the FR-RC. The converters can continuously return 75% of the nominal regenerative power. They are applied to the servo amplifiers of the MR-H350TN or more.

Model	Nominal regenerative power (kW)	Applied servo amplifier
FR-RC15	15	MR-H350TN to MR-H700TN
FR-RC30	30	MR-H11KTN MR-H15KTN
FR-RC55	55	MR-H22KTN

Note: To improve the input power factor or when connecting two or more FR-RC's to the same power transformer, install the power factor improving reactor (FR-BAL) in the dotted area.

(2) Connection example

(3) Outside dimensions of the power return converters

Heat generation area outside mounting dimension

					0				0		[Unit : mm(in.)]
Model	А	AA	В	BA	С	D	E	EE	к	F	Approx. weight [kg(lb)]
FR-RC-15K	270	200	450	432	195	10	10	8	3.2	87	19
FR-RC-15K	(10.630)	(7.874)	(17.717)	(17.008)	(7.677)	(0.394)	(0.394)	(0.315)	(0.126)	(3.425)	(41.888)
ED DC 20K	340	270	600	582	195	10	10	8	3.2	90	31
FR-RC-SUK	(13.386)	(10.630)	(23.622)	(22.913)	(7.677)	(0.394)	(0.394)	(0.315)	(0.126)	(3.543)	(68.343)
	480	410	700	670	250	12	15	15	3.2	135	55
FR-RC-55K	(18.898)	(16.142)	(27.559)	(26.378)	(9.843)	(0.472)	(0.591)	(0.591)	(0.126)	(5.315)	(121.254)

(4) Mounting hole machining dimensions

When the power return converter is fitted to a enclosed control box, mount the heat generating area of the converter outside the box to provide heat generation measures. At this time, the mounting hole having the following dimensions is machined in the box.

_		[Unit	: mm(in.)]
Model	А	В	D
ED DC 15V	260	412	10
FR-RC-15K	(10.236)	(16.220)	(0.394)
ED DC 201	330	562	10
FR-RC-SUK	(12.992)	(22.126)	(0.394)
ED DC 55V	470	662	12
FR-RC-55K	(18.504)	(26.063)	(0.472)

14.1.5 External dynamic brake

(1) Selection of dynamic brake

The dynamic brake is designed to bring the motor to a sudden stop when a power failure occurs or the protective circuit is activated. This brake is contained in the servo amplifier of 7kW or less but is not included in the servo amplifier of 11kW or more. When this brake is required, refer to the following table and place a purchase order. Set " $\Box 1 \Box \Box$ " in parameter No.3.

Note that when the inertia moment of the load is large, the built-in brake in the servo amplifier of 7kW or less may be used. (Refer to Section 13.3)

Servo amplifier	Dynamic brake
MR-H11KTN	DBU-11K
MR-H15KTN	DBU-15K
MR-H22KTN	DBU-22K

(2) Connection example

14. OPTIONS AND AUXILIARY EQUIPMENT

(3) Outline dimension drawing

Screw: M3.5

Model	А	В	С	D	Е	F	G	Approx. weight [kg(lb)]	Connection wire[mm ²]
DBU-11K	200	190	140	20	5	170	163.5	2	5.5
	(7.874)	(7.486)	(5.512)	(0.787)	(0.197)	(6.693)	(6.437)	(4.409)	
DBU-15K	250	238	150	25	6	235	228	6	5.5
DBU-22K	(9.843)	(9.370)	(5.906)	(0.984)	(0.236)	(9.252)	(8.976)	(13.228)	

POINT

• Configure up a sequence which switches off the contact of the brake unit after (or as same as) it has turned off the servo on signal at a power failure or failure.

Screw: M4

- For the braking time taken when the dynamic brake is operated, refer to Section 13.3.
- The brake unit is rated for a short duration. Do not use it for high duty.

14.1.6 Cables and connectors

(1) Cable make-up

The following cables are used for connection with the servo motor and other models.

Large setting display unit

No.	Product name	Model	Desc	cription	Application
1)	Encoder cable	MR-HSCBL□M Refer to (2) in this section.	Servo amplifier side connector (Honda Tsushin Kogyo make) Connector: PCR-S20FS Cable: PCR-LS20LA1	Encoder side connector (Japan Aviation Electronics Industry make) Plug: MS3106B20-29S Cable clamp: MS-3057-12A	Long flexing life IP20
2)	Encoder cable for IP65	MR-EN1CBL□M-H Refer to (2) in this section.	Servo amplifier side connector (Honda Tsushin Kogyo make) Connector: PCR-S20FS Cable: PCR-LS20LA1	Encoder side connector (DDK make) Plug: MS3106A20-29S(D190) Cable clamp: CE3057-12A- 3(D265) Back shell: CE02-20BS-S	Long flexing life IP65
3)	Standard encoder cable	MR-JCCBL□M-L Refer to (2) in this section.	Servo amplifier side connector (3M make or equivalent) Connector: 10120-3000VE Shell kit: 10320-52F0-008	Encoder side connector (AMP make or equivalent) Housing: 1-172161-9 Connector pin: 170359-1	Standard flexing life IP20
4)	Long flexing life encoder cable	MR-JCCBL□M-H Refer to (2) in this section.		•	Long flexing life IP20
5)	Encoder connector set	MR-JSCNS	Servo amplifier side connector (Honda Tsushin Kogyo make) Connector: PCR-S20FS Cable: PCR-LS20LA1	Encoder side connector (Japan Aviation Electronics Industry make) Plug: MS3106B20-29S Cable clamp: MS3057-12A	IP20
6)	Encoder connector set	MR-EN1CNS	Servo amplifier side connector (Honda Tsushin Kogyo make) Connector: PCR-S20FS Cable: PCR-LS20LA1	Encoder side connector Plug: MS3106A20-29S(D190) Cable clamp: CE3057-12A- 3(D265) Back shell: CE02-20BS-S	IP65
7)	Encoder connector set	MR-HCNM	Servo amplifier side connector (Honda Tsushin Kogyo make) Connector: PCR-S20FS Cable: PCR-LS20LA1	Encoder side connector (AMP make or equivalent) Housing: 1-172161-9 Pin: 170359-1 Cable clamp: MTI-0002 (Toa Denki Kogyo make)	IP20

No.	Product name	Model	Desc	cription	Application
8)	Conversion	MR-HCN2			
	connector		Servo amplifier side	Encoder cable side	
9)	Power	MR-PWCF		Plug: CE05-6A14S-2SD-B	Must be
	connector set	Refer to Servo		(DDK make)	used for
		Motor Instruction		Cable connector: YS014-9 to 11	compliance
		Manual		(Daiwa Dengyo make)	with the EN
10)	Power	MR-PWCNS1		Plug: CE05-6A22-23SD-B-BSS	Standard.
	connector set	Refer to Servo		Cable clamp: CE3057-12A-	IP65
		Motor Instruction		2(D265) (DDK make)	
		Manual			
11)	Power	MR-PWCNS2		Plug: CE05-6A24-10SD-B-BSS	
	connector set	Refer to Servo		Cable clamp: CE3057-16A-	
		Motor Instruction		2(D265) (DDK make)	
		Manual			
12)	Power	MR-PWCNS3		Plug: CE05-6A32-17SD-B-BSS	
	connector set	Refer to Servo		Cable clamp: CE3057-20A-	
		Motor Instruction		1(D265) (DDK make)	
		Manual			
13)	Brake	MR-BKCN		Plug: MS3106A10SL-4S(D190)	Compliant
	connector set	Refer to Servo		(DDK make)	with the EN
		Motor Instruction		Cable connector: YS010-5 to 8	standard
		Manual		(Daiwa Dengyo make)	IP65
14)	Junction	MR-HTBL□M	Junction terminal block side	Servo amplifier side connector	\land
	terminal block	Refer to Section	connector	(Honda Tsushin Kogyo make)	
	cable	14.1.7.	(Izumi Denki make)	Connector: PCR-S50FS	
			Connector: JE1S-501	Cable: PCR-LS50LA	
15)	Junction	MR-TB50	Refer to Section 14.1.7.		
	terminal block				
16)	Parameter	MR-PRUCBL			
	unit cable	Refer to Section			
	l	14.1.1.			$ \longrightarrow $
17)	Large setting	MR-PRUBCBL□M	Servo amplifier side connector	MR-PRU02 side connector	\square
	/display unit	Refer to Section	(Japan Aviation Electronics	(Japan Aviation Electronics	
	cable	14.1.10.	Industry make)	Industry make)	$ \rangle$
			Connector: DE-9PF-N	Connector: DE-9PF-N	
			Case: DE-C1-J0-S0	Case: DE-C1-J0-50	
			I I -		
				L L L	

14. OPTIONS AND AUXILIARY EQUIPMENT

No.	Product name	Model	Desc	cription	Application
18)	Communicati	MR-HPC98CBL3M	Servo amplifier side connector	Personal computer side	For
	on cable	section	(Japan Aviation Electronics	(Japan Aviation Electronics	with PC 08
		Section.	Connector: DE 9PE N	(Japan Aviation Electronics	porsonal
			C_{250} : DE C1_16 S6	Connector: DE 25PE N	computer
			Case. DE-C1-50-50	Case: DB-C2-19	computer
19)	Communicati	MR-HPCATCBL3M	Servo amplifier side connector	Personal computer side	For
	on cable	Refer to (3) in this	(Japan Aviation Electronics	connector	connection
		section.	Industry make)	(Japan Aviation Electronics	with PC-AT-
			Connector: DE-9PF-N	Industry make)	compatible
			Case: DE-C1-J6-S6	Connector: DE-25PF-N	personal
				Case: DE-C2-J9	computer
20)	Connector set	MR-HCN1	·~~~	Servo amplifier side connector	
				(Honda Tsushin Kogyo make)	
				Connector: PCR-S50FS	
				Cable: PCR-LS50LA	
21)	CN3 cable	MR-H3CBL1M		Servo amplifier side connector	
				Housing: 171822-4	
				100011g. 171066-7	

14. OPTIONS AND AUXILIARY EQUIPMENT

(2) Encoder cable

 If you have fabricated the encoder cable, connect it correctly. Otherwise, misoperation or explosion may occur. 	
POINT • The encoder cable is not oil-proof.	
 Refer to Section 13.4 for the flexing life of the encoder cables. 	

Generally use the encoder cable available as our options. If the required length is not found in the options, fabricate the cable on the customer side.

(a) MR-HSCBLDM (long flexing life product)

This encoder cable is used with the HC-SF, HC-RF, HC-UF2000r/min and HA-FF□C-UE series servo motors.

1) Explanation of model name

Model:	MR-HSCBL⊟M
--------	------------

Sy	mbol	Cable length [m (ft.)]
	2	2 (6.557)
	5	5 (16.393)
	10	10 (32.787)
	20	20 (65.574)
	30	30 (98.361)
	40	40 (131.148)
:	50	50 (163.934)

2) Connection diagram

Refer to Section 4.3.1 or Section 5.3.2 for the servo amplifier side pin assignment.

Note: This wiring is required for use in the absolute position detection system. This wiring is not needed for use in the incremental system.

When fabricating an encoder cable, use the recommended wires given in Section 14.2.1 and the MR-JSCNS connector set for encoder cable fabrication, and fabricate an encoder cable as shown in the following wiring diagram. Referring to this wiring diagram, you can fabricate an encoder cable of up to 50m (163.934ft) length including the length of the encoder cable supplied to the servo motor.

(b) MR-EN1CBL^DM-H (long flexing life product)

Model: MR-EN1

This encoder cable is used with the HC-SF, HC-RF, HC-UF2000r/min, HA-LH and HA-FF□C-UE series servo motors.

The servo motor side connector of this encoder cable is IP65 compatible. However, if the cable is used with the HA-FF \Box C-UE, motor protection (IP54) does not improve.

1) Explanation of model name

С	BL⊒M-H T	
	Symbol	Cable length [m (ft.)]
	2	2 (6.557ft.)
	5	5 (16.393ft.)
	10	10 (32.787ft.)
	20	20 (65.574ft.)
	30	30 (98.361ft.)
	40	40 (131.148ft.)
	50	50 (163.934ft.)

2) Connection diagram

Refer to Section 4.3.1 or Section 5.3.2 for the servo amplifier side pin assignment.

Note: This wiring is required for use in the absolute position detection system. This wiring is not needed for use in the incremental system. AWG24 used (10m (32.787ft.) to 50m (163.934ft.))

When fabricating an encoder cable, use the recommended wires given in Section 14.2.1 and the MR-ENICNS connector set for encoder cable fabrication, and fabricate an encoder cable as shown in the following wiring diagram. Referring to this wiring diagram, you can fabricate an encoder cable of up to 50m (163.934ft) length including the length of the encoder cable supplied to the servo motor.

(c) MR-JCCBLIM-L • MR-JCCBLIM-H

These encoder cables are used with the HC-MF, HC-UF3000r/min and HA-FH series servo motors.

1) Explanation of model name

2) Connection diagram

MR-JCCBL2M-L

MR-JCCBL5M-L MR-JCCBL2M-H

Refer to Section 4.3.1 or Section 5.3.2 for the servo amplifier side pin assignment.

MR-JCCBL10M-L to MR-JCCBL30M-L

MR-JCCBL10M-H to MR-JCCBL50M-H

Note: This wiring is required for use in the absolute position detection system. This wiring is not needed for use in the incremental system.
(e) When using MR-HCNM

This encoder connector set is used with the HC-MF, HC-UF3000r/min and HA-FH series servo motors.

Refer to Section 4.3.1 or Section 5.3.2 for the servo amplifier side pin assignment. Use the recommended wires given in Section 14.2.1 and fabricate the encoder cable in accordance with the connection diagram shown below. In this connection, an up to 50m (163.934ft) long encoder cable including the encoder cable supplied to the servo motor can be fabricated.

When the encoder cable is to be fabricated by the customer, the wiring of MD and MDR is not required.

When using AWG24

When using AWG22

Note: This wiring is required for use in the absolute position detection system. This wiring is not needed for use in the incremental system. (3) Communication cable

POINT								
• This cable may not be used with some personal computers. After fully								
examining the signals of the RS-232C connector, refer to this section and								
fabricate t	he cable.							

Select the communication cable according to the shape of the RS-232C connector of the personal computer used. When fabricating the cable, refer to the connection diagram in this section.

The following must be observed in fabrication:

- Always use a shielded, multi-core cable and connect the shield with FG securely.
- The optional communication cable is 3m (10 ft.) long. When the cable is fabricated, its maximum length is 15m (49 ft.) in offices of good environment with minimal noise.

Connection diagram

Note: The PC98 Notes having the connector of half-pitch 14 pins are also available. Confirm the shape of the RS-232C connector of the personal computer used. 14.1.7 Junction terminal block (MR-TB50)

(1) How to use the junction terminal block

Always use the junction terminal block (MR-TB50) with the junction terminal block cable (MR-HTBL□M) as a set. A connection example is shown below:

Ground the junction terminal block cable on the junction terminal block side with the standard accessory cable clamp fitting (AERSBAN-ESET). For the use of the cable clamp fitting, refer to Section 14.2.6 (3).

(2) Terminal block labels

The junction terminal block does not include the terminal block labels which indicate the signal layouts for MR-H-TN. Cut off the terminal block label in Appendix 2 at the dotted line and fold it up at the centerline for use.

(a) For positioning

VDD	DOG	PPO	NPO	SG	SG	DI1	LSP	DIO	INP	ALM	MD0	STP	ST2	P15R	LA	LB	LZ	FPA	PPB	N15R	LG		
RD	SG	SG	VDD	VIN	SON	DI2	LSN	CPC	ZP	EMG	ORG	ST1	LG	OP	LAR	LBR	LZR	LG	LG	OVR	TLAF	.	SD

(b) For roll feeding

VDD	DOG	PPO	NPO	SG	SG	JFS	π	DEC	INP	ALM	MD0	MD2	ST2	P15R	LA	LB	LZ	FPA	PPB	N15R	LG		
RD	SG	SG	VDD	VIN	SON	STP	PS2	СРО	ZP	EMG	MD1	ST1	LG	OP	LAR	LBR	LZR	LG	LG	OVR	TLAP		SD

(3) Outline drawing

Terminal screw: M3.5 Applicable wire: 2mm² Crimping terminal width: 7.2mm (0.283in.) max.

(4) Junction terminal block cable (MR-HTBLDM)

(a) Explanation of model name

Model: MR-HT	BL⊒M	
	Symbol	Cable length [m (ft.)]
	05	0.5 (1.639)
	1	1 (3.279)

(b) Connection diagram

-S50FS	(Servo ar	nplifier s	ide)	JE1S-50	01 (Ju	unction ter	minal side)	
Signa	al name		Ī					
Positioning system	Roll feeding system	Pin No.				Pin No.		Terr No.
VDD	VDD	22	<u>Lii</u>			1		- 2
RD	RD	49			<u> </u>	2		
DOG	CP	37		<u>'</u>		2		
		17	1 1		1 1			
50	50	17		1	i i	4		
PPO	PPO	18	1.1		1 1	5		-2
SG	SG	47		· · ·	- 7	6		
NPO	NPO	19		Í	_			2
VDD	VDD	21		- <u>í</u>		8		
SG	SG	16				9 -		- 2
VIN	VIN	20		<u> </u>		10		
SG	SG	40				11		3
SON	SON	12				12		
		14				12		
	CTD	14		1				,
		20						
LOP		38						3
LSN	PS2	39		Í		16		
DIO	DEC	13	Empty		Empty	17 -		<u> </u>
CPO	CPO	23	Empty		Empty	18		- 8
			Empty	<u> </u>	Empty			
INP	INP	24	Empty	1	Empty	19		3
ZP	ZP	25	Empty		Empty	20 -		
		10	Empty		Empty			
ALM	ALM	48	Empty		Empty	21		3
EMG	EMG	46	1.9		1.7	22		- 1
			Empty	<u> </u>	Empty			
MD0	MD0	41				23 -		- 3
STP	MD1	42		<u> </u>		24		- 1
ORG	MD2	43				25 -		3
ST1	ST1	44				26		1
ST2	ŠT2	45				27 -		3
			Empty		Empty			
LG	LG	34				28		1
P15R	P15R	1				29 -		- 3
OP	OP	33				30		- 1
IA	IA	4				31		- 4
LAR	LAR	5				32		1
I B	I B	ĕ		·/		33		
		7				24		
		6	-	1		34		
		0				<u>⊢ >?</u>		4
		3		1				
FPA	FPA	31				31		4
LG	LG	28		· · ·		38		1
⊦₽В	FPB	32		Í		39		4
LG	LG	30		-í		40		- 1
N15R	N15R	26				41		- 4
OVR	OVR	2		<u> </u>		42		- 2
IG	IG	3	L		,	43		- 4
TLAP	TIĂP	27	Υ	·/				
1 6/ 11	16/1		\		-			
		29	\vdash	- (/	45		- 4
		10				46		
		11						
		25		1				4
		30				40		7 2
0.0	0.5	30				49		4
	N 1 1				-			'

14.1.8 Servo configuration software

The Servo Configuration software(MRZJW3-SETUP71E) uses the communication function of MR-H-TN to perform parameter setting changes, graph display, test operation, etc. on a personal computer.

(1) Specifications

Item	Description
Communication signal	Conforms to RS-232C.
Baudrate	9600bps
Monitor	Batch display, high-speed display, graph display
	The minimum resolution changes with the processing speed of the personal computer.
Alarm	Alarm display, alarm history, data display at alarm occurrence
Diagnostia	External I/O signal display, function device display, cumulative power-on time display, software
Diagnostic	number display, tuning data display, ABS data display
Parameters	Data setting, list display, change list display, detailed information display
Test energian	JOG operation, positioning operation, motor-less operation, output signal forced output
Test operation	1 step feed operation
Point data	Position block, speed block
File operation	Data read, save, print
Others	help display

Note: On some personal computers, this software may not run properly.

(2) System configuration

(a) Components

To use this software, the following components are required in addition to the servo amplifier and servo motor:

Model	Description				
	Which contains a 80386 or higher CPU and on which Windows 3.1 • 95 runs				
Personal computer	(80486 or higher recommended). Memory: 8MB or more, hard disk: 1MB or more, serial port				
	used.				
OS Windows 3.1 or Windows 95 (English)					
Dimler	640 imes 400 or more color or 16-scale monochrome display which can be used with Windows				
Display	3.1 • 95.				
Keyboard	Which can be connected to the personal computer.				
Marray	Which can be used with Windows 3.1 or Windows 95 (English).				
Mouse	Note that a serial mouse is not used.				
Printer	Which can be used with Windows 3.1 or Windows 95 (English).				
	MR-HPC98CBL3M • MR-HPCATCBL3M				
Communication cable	When these cannot be used, refer to Section 15.1.6(3) and fabricate.				

Note:Windows is a registered trademark of Microsoft Corporation.

(b) Configuration diagram

14.1.9 Heat sink outside mounting attachment (MR-ACN)

Use the heat sink outside mounting attachment to mount the heat generation area of the servo amplifier in the outside of the control box to dissipate servo amplifier-generated heat to the outside of the box and reduce the amount of heat generated in the box, thereby allowing a compact control box to be designed. In the control box, machine a hole having the panel cut dimensions, fit the heat sink outside mounting attachment to the servo amplifier with the fitting screws (4 screws supplied), and install the servo amplifier to the control box.

The environment outside the control box when using the heat sink outside mounting attachment should be within the range of the servo amplifier operating environment conditions.

(1) Panel cut dimensions

(a) MR-ACN350 to MR-ACN700

Panel cut dimensions

(b) MR-ACN11K, MR-ACN22K

								[Unit: mm (in.)]
Variable dimensions Model	A	AA	AB	В	ВА	BB	С	Servo amplifier
MR-ACN11K	250 (9.843)	190 (7.480)	230 (9.055)	553 (21.772)	483 (19.016)	523 (20.591)	4-M8	MR-H11KTN
MR-ACN22K	340 (13,386)	284	308 (12 126)	556 (21,890)	483	526 (20,724)	4-M10	MR-H15KTN MR-H22KTN

- (1) Fitting method
 - (a) MR-ACN350 (for MR-H200TN, MR-H350TN)

a. Assembling the heat sink outside mounting attachment

b.Installation to the control box

(b) MR-ACN500 (for MR-H500TN), MR-ACN700 (for MR-H700TN)

a. Assembling the heat sink outside mounting attachment

b.Installation to the control box

(c) MR-ACN11K (for MR-H11KTN), MR-ACN22K (for MR-H15KTN, MR-H22KTN)

a. Assembling the heat sink outside mounting attachment

b.Installation to the control box

14.1.10 Large setting/display unit (MR-PRU02)

When using the MR-H-TN in the roll feeding system, the MR-PRU02 allows status display, test operation, and reference to point table data. For details of its usage, refer to the installation guide of the MR-PRU02 large setting/display unit.

Use it with the large setting/display unit cable (MR-PRUBCBLDM).

(1) Specification

	Item	Specification
Model		MR-PRU02
Function	Manual operation	JOG operation, 1 step feed operation
	Status display	Current position, Command position, Command remaining distance,
		Override, Position block, Command pulse value, Machine speed, Droop
		pulse, Torque limit command voltage, Regenerative load ratio, Effective
		load factor, Peak load ratio, Within one-revolution position, ABS counter,
		Servo motor speed, Bus voltage
	Point table data	Reference to position data
		speed and acceleration / deceleration time constant
Display		7 segment LED, 2 digits (code) and 7 digits (data)
Environ	Ambient temperature	0 to +55 [°C] (non-freezing)
ment		32 to +131 [°F] (non-freezing)
	Ambient humidity	90%RH or less (non-condensing)
	Storage temperature	-20 to +65 [°C] (non-freezing)
		-4 to +149 [°F] (non-freezing)
	Storage humidity	90%RH or less (non-condensing)
	Ambient	Indoors (no direct sunlight)
		Free from corrosive gas, flammable gas, oil mist, dust and dirt
	Altitude	Max. 1000m (3280ft) above sea level
	Vibration	5.9 [m/s ²] {0.6G} or less
		19.4 [ft/s ²] or less
Cooling me	ethod	Self-cooling
Installatio	n panel	1.6(0.063),2.3(0.091),3.2(0.126)
Thickness	[mm(in)]	
Weight [g(oz)]	130(4.586)

(2) Outline drawing

[Unit: mm (in.)] 87.5 (3.445) MR-PRU02 125.5 (4.941) 11 Spacer Needed for the panel thickness of 3.2mm (0.126in.). Panel cutting dimensions 11 Not needed for 1.6 (0.063) and 2.3mm (0.091in.). Panel thickness: 1.6mm (0.063in.), 2.3mm (0.091in.), 3.2mm (0.126in.) \odot Note that the accessory spacer should be used Fixture Screw for 3.2mm (0.126in.) thickness. Ð $M4 \times 8$ (4) Makeup MR-H-TN Cable clamp MR-PRU02 (AERSBAN-■SET) 1m (3.279ft.) max. CN4 Large setting/display unit cable MR-PRUBCBL POINT • If noise is generated to malfunction the equipment, use the cable clamp (AERSBAN- SET) to suppress noise. Use the cable clamp fixture in accordance with Section 14.2.6, (3). (5) Large setting/display unit cable Used to connect the large setting/display unit and MR-H-TN. Model: MR-PRUBCBL DM Symbol Cable length L [m (in.)] 3 3 (9.843)

(3) Panel cutting/fitting method

14.1.11 External digital display (MR-DP60)

(1) Specifications

	Item	Specifications					
Display		Red 7-segment LED, signed 6 digits					
Power supply	Permissible voltage fluctuation	Single phase, 85 to 253VAC, 50/60Hz					
	Current consumption	ithin 200mA					
	Interface	Conforming to RS-422A					
	Baudrate	4800bps asynchronous					
Communication	Bit length	Start bit = 1, data bit = 8, parity bit = 1, stop bit = 1					
Communication	Protocol	MELSERVO protocol					
	Communication commands	Commands dedicated to the MELSERVO					
Operating tempe	rature range	0°C to +60°C, 90%RH or less, non-condensing					
Storage temperat	ture range	−5°C to +70°C					

(2) Connection example

(3) Terminal layout

Signal	Description
L1	Single-phase, 100 to 230VAC
L2	power input
	Earth
RXD	Receive signal input
RXD	Inverse receive signal input
TXD	Inverse transmission signal output
TXD	Transmission signal output
P5	5VDC output (Note)
LG	Control common

Note:The 5VDC output is used for the internal control circuit to check voltage, etc. Do not use this terminal to supply voltage to the other equipment.

(4) Fitting

[Unit: mm (in.)]

(5) Outline dimensional drawing

[Unit: mm (in.)]

14.1.12 Manual pulse generator (MR-HDP01)

(1) Specifications

lte	em	Specifications					
	Voltage	4.5 to 13.2VDC					
Power supply	Current	60mA or loss					
	consumption	ooning of tess					
Interface		Dutput current max. 20mA for open collector output					
Pulse signal form		A phase, B phase, 2 signals of 90° phase difference					
Pulse resolution	on	100P/rev					
Max. speed		Max. 600r/min instantaneously, 200r/min normally					
Operating tem	perature	1090 += 10090					
range							
Storage tempe	rature range	-30° C to $+80^{\circ}$ C					

(2) Connection example

Supply external power to the manual pulse generator.

(3) Terminal layout

$\frac{12V0V}{\otimes} \frac{A}{\otimes} \frac{B}{\otimes}$	+5 to		
$\otimes \otimes \otimes \otimes$	12V 0V	ΥΑ	В
	$\otimes \otimes$	\otimes	\otimes

Signal	Description
+5 to 12V	Power input
0V	Common for power and signal
А	A-phase pulse output
В	B-phase pulse output

(4) Installation

(5) Outline drawing

14.1.13 Battery (MR-BAT, A6BAT)

Used to configure up the absolute position detection system.

14.2 Auxiliary equipment

Always use the devices indicated in this section or equivalent. To comply with the EN Standard or UL/C-UL Standard, use the products which conform to the corresponding standard.

14.2.1 Recommended wires

(1) Wires for power supply wiring

The following diagram shows the wires used for wiring. Use the wires given in this paragraph or equivalent.

The following table lists wire sizes. The wires used assume that they are 600V vinyl wires and the wiring distance is 30m (98.361ft) max. If the wiring distance is over 30m (98.361ft), choose the wire size in consideration of voltage drop.

The servo motor side connection method depends on the type and capacity of the servo motor. Refer to Section 3.3.

The crimping terminals used with the U, V and W wires for the servo amplifier should be those of Japan Crimping Terminal's 22-S5 or equivalent.

Convo oronalifican	Wires [mm ²]								
Servo ampliner	1) R • S • T	R S T 2) R1 S1 3) U V W 😓			5) B1 • B2	6) BU • BV			
MR-H10TN						Ν			
MR-H20TN			1.95 (AWC16)						
MR-H40TN	2 (AWG14)		1.25 (AWG10)						
MR-H60TN									
MR-H100TN			2 (AWG14)	2 (AWG14)					
MR-H200TN	3.5 (AWG12)		3.5 (AWG12)		1.25 (AWG10)				
MR-H350TN		9(AWC14)	(Note)						
	5.5 (AWG10)	2 (AWG14)	5.5 (AWG10)						
MR-H500TN			5.5 (AWG10)						
MR-H700TN	8 (AWG8)		8 (AWG8)	3.5 (AWC12)					
MR-H11KTN	14 (AWG6)		22 (AWG4)	(111012)		2			
MR-H15KTN	22 (AWG4)		30 (AWG2)	5.5 (AWC 10)		(AWG14)			
MR-H22KTN	50 (AWG1/0)		60 (AWG2/0)	(AWG10)					

Tale 14.1 Recommended Wires

Note:3.5mm² (AWG12) for use of the HC-RF203 servo motor.

Use the following wires to wire the brake unit (FR-BU) and power return converter (FR-RC):

Model	Wire [mm ²]
FR-BU-15K	3.5 (AWG12)
FR-BU-30K	5.5 (AWG10)
FR-BU-55K	14 (AWG6)
FR-RC-15K	14 (AWG1/0)

(2) Wires for cables

When fabricating a cable, use the wire models given in the following table or equivalent:

Туре	Model Length		Wire model
		2 to 10 (6.557 to 32.787)	UL20276 AWG#28 7pair(BLAC)
		20 30 (65.574 98.361)	UL20276 AWG#22 6pair(BLAC)
		2 5 (6.557 16.393)	A14B2343 6P
E		10 to 50 (32.787 • 163.934)	A14B0238 7P
Encoder cable		2 • 5 (6.557 • 16.393)	A14B2339 4P
		10 to 50 (32.787 to 163.934)	A14B2343 6P
		2 • 5 (6.557 • 16.393)	A14B2339 4P
		10 to 50 (32.787 163.934)	A14B2343 6P
Communication cable	MR-HPC98CBL3M	3 (9.843)	TKVVBS(P) 0.2mm ² ×2p
	MR-HPCATCBL3M	3 (9.843)	TKVVBS(P) 0.2mm ² ×2p

Table	14 2	Wires	for	Option	Cables
rubic	17.4	******	101	opuon	Cubico

	Cara		Cł	(Nata 2)		
(Note 2) Wire model	Core	Number of cores	Structure	Conductor	Insulation sheath	(Note 3)
(Note 2) Wire model	SIZE	Number of cores	[Number of	resistance	outline	
	[11111]		wires/mm]	[Ω/km]	d [mm](Note 1)	[11111]
UL20276 AWG#28 7pair (BLAC)	0.08	14 pcs. (7 pairs)	7/0.127	222 or less	0.38	5.6
UL20276 AWG#22 6pair (BLAC)	0.3	12 pcs. (6 pairs)	12/0.18	62 or less	1.2	8.2
TKVVBS(P) 0.2mm ² ×2p	0.2	4 pcs. (2 pairs)	7/0.18	119 or less	0.54	5.9
A14B2343 6P	0.2	12 pcs. (6 pairs)	40/0.08	105 or less	0.88	7.2
A14B2339 4P	0.2	8 pcs. (4 pairs)	40/0.08	105 or less	0.88	6.5
A14B0238 7P	0.2	14 pcs. (7 pairs)	40/0.08	105 or less	1.88	8.0

Table 14.3 Wire Specifications

Note 1. d is as shown below.

Conductor Insulation sheath

2. Purchase: Toa Denki Kogyo

3. Standard outline. Max. outline is about 10% larger.

(3) CC-Link twisted cable

• For the cables other than the one indicated here, refer to the open field network CC-Link catalog (L(NA)74108143).

The specifications of the twisted cable usable in CC-Link and the recommended cable are indicated below. If the cable used is other than the recommended cable indicated in the following table, we cannot guarantee the performance of CC-Link.

Item	Specifications				
Model	Kurashige Kogyo make FANC-SB 0.5mm ² ×3 (Note)				
Cable type	Shielded twisted cable				
Conductor sectional area	0.5mm ²				
Conductor resistance (20°C)	37.8Ω/km or less				
Insulation resistance	10000Ω/km or more				
Withstand voltage	500VDC 1 minute				
Capacitance (1kHz)	60nF/km or less				
Characteristic impedance (1MHz)	100±15Ω				
Section	DA Sheath Shield Hue White Yellow Aluminum tape DB DG Ground wire				
Outline dimension	7mm				
Approx. weight	65kg/km				

Note. For any inquiry, please contact your nearest Mitsubishi Electric System Service Co., Ltd.

14.2.2 No-fuse breakers, magnetic contactors

Always use one no-fuse breaker and one magnetic contactor with one servo amplifier.

Servo amplifier	No-Fuse breaker	Magnetic contactor
MR-H10TN	Model NF30 5A	S-N10
MR-H20TN	Model NF30 10A	S-N10
MR-H40TN	Model NF30 10A	S-N10
MR-H60TN	Model NF30 10A	S-N10
MR-H100TN	Model NF30 15A	S-N10
MR-H200TN	Model NF30 20A	S-N18
MR-H350TN	Model NF50 30A	S-N25
MR-H500TN	Model NF50 05A	S-N35
MR-H700TN	Model NF100 75A	S-N50
MR-H11KTN	Model NF100 100A	S-N65
MR-H15KTN	Model NF225 125A	S-N95
MR-H22KTN	Model NF225 175A	S-N125

14.2.3 Power factor improving reactors

When using the power return converter, consider the regenerative power of the power return converter and select the power factor improving reactor.

Sonio amplifica	Madal		Dimensions [mm (in.)]					
Servo ampliner	WOUEI	А	В	С	D	Е	F	[kg (lb)]
MR-H10TN		135	64	120	120	45	14	2
MR-H20TN	FR-BAL-0.4K	(5.315)	(2.520)	(4.724)	(4.724)	(1.772)	M4	(4.409)
MD LIAOTNI		135	74	120	120	57	MA	3
MR-H401N	FK-DAL-0.75K	(5.315)	(2.913)	(4.724)	(4.724)	(2.244)	1014	(6.614)
MD LIGOTN		160	76	145	145	55	N44	4
WIK-HOUTIN	FR-DAL-1.3K	(6.299)	(2.992)	(5.709)	(5.709)	(2.165)	1014	(8.818)
MD LILOTN	ED BAL 2 9K	160	96	145	145	75	M4	6
WIK-III001IN	I'R-DAL-2.2K	(6.299)	(3.780)	(5.709)	(5.709)	(2.953)	1014	(13.228)
MD LI200TN	ED BAL 27K	220	95	200	200	70	M5	8.5
WIK-1120011N	TR-DAL-3.7K	(8.661)	(3.740)	(7.874)	(7.874)	(2.756)	IVI3	(18.739)
MD LI250TN	ED BAL 75K	220	125	205	200	100	M5	14.5
WIK-1155011N	I'R-DAL-7.JK	(8.661)	(4.921)	(8.071)	(7.874)	(3.937)	IVI3	(31.967)
MD USOOTN		280	140	245	255	100	Ме	19
WIK-H50011N	FR-DAL-IIK	(11.024)	(5.512)	(9.646)	(10.039)	(3.937)	IVIO	(41.888)
MR-H700TN	ED DAL 15V	295	156	280	270	110	Me	27
MR-H11KTN	FR-DAL-15K	(11.614)	(6.142)	(11.024)	(10.630)	(4.331)	IVIO	(59.525)
MD II15ZTN	ED DAL 9917	290	200	300	240	170	1.00	35
MR-HIJKIN	FR-BAL-22K	(11.417)	(7.874)	(11.811)	(9.449)	(6.693)	11/18	(77.162)
MD LI99VTN	ED DAL 2014	290	220	300	240	190	MO	43
WIK-HLLKIN	FR-BAL-30K	(11.417)	(8.661)	(11.811)	(9.449)	(7.480)	IVIð	(94.799)

14.2.4 Relays

The following relays should be used with the interfaces:

Interface	Selection example
Relay used especially for switching on-off analog input	To prevent defective contacts , use a relay for small signal
command and input command (interface DI-1) signals	(twin contacts).
	(Ex.) OMRON : type G2A , MY
Relay used for digital output signals (interface DO-1)	Small relay with 12VDC or 24VDC of 40mA or less
	(Ex.) OMRON : type MY

14.2.5 Surge absorbers

A surge absorber is required for the electromagnetic brake. Use the following surge absorber or equivalent. Insulate the wiring as shown in the diagram.

Maximum rating					Maximum		Statia consoitu			
Permissi volt	ble circuit age	Surge immunity	Energy immunity	Rated power	Maximum limit voltage		limit voltage		(Reference value)	rating (Range) V1mA
AC[Vma]	DC[V]	[A]	[J]	[W]	[A] [V]		[pF]	[V]		
140	180	(Note) 500/time	5	0.4	25	360	300	220 (198 to 242)		

Note: 1 time = 8 \times 20 μs

(Example) ERZV10D221

(Matsushita Electric make) TNR-12G221K (Marukon Electronic make) Outline dimension drawing [mm (in.)] (ERZV10D221)

14.2.6 Noise reduction techniques

Noises are classified into external noises which enter the servo amplifier to cause it to malfunction and those radiated by the servo amplifier to cause peripheral devices to malfunction. Since the servo amplifier is an electronic device which handles small signals, the following general noise reduction techniques are required.

Also, the servo amplifier can be a source of noise as its outputs are chopped by high carrier frequencies. If peripheral devices malfunction due to noises produced by the servo amplifier, noise suppression measures must be taken. The measures will vary slightly with the routes of noise transmission.

- (1) General reduction techniques
 - Avoid laying power lines (input and output cables) and signal cables for the servo amplifier side by side or do not bundle them together. Separate power lines from signal cables.
 - Use shielded, twisted pair cables for connection with the encoder and for control signal transmission, and connect the shield to the SD terminal.
 - Ground the servo amplifier, servo motor, etc. together at one point (refer to Section 5.6).

(2) Reduction techniques for external noises that cause the servo amplifier to malfunction If there are noise sources (such as a magnetic contactor, an electromagnetic brake, and many relays which make a large amount of noise) near the servo amplifier and the servo amplifier may

malfunction, the following countermeasures are required.

- Provide surge suppressors on the noise sources to suppress noises.
- Attach data line filters to the signal cables.
- Ground the shields of the encoder connecting cable and the control signal cables with cable clamp fittings.
- (3) Techniques for noises radiated by the servo amplifier that cause peripheral devices to malfunction Noises produced by the servo amplifier are classified into those radiated from the cables connected to the servo amplifier and its main circuits (input and output circuits), those induced electromagnetically or statically by the signal cables of the peripheral devices located near the main circuit cables, and those transmitted through the power supply cables.

Noise transmission route	Suppression techniques
	When measuring instruments, receivers, sensors, etc. which handle weak signals and may
	malfunction due to noise and/or their signal cables are contained in a control box together with the
	servo amplifier or run near the servo amplifier, such devices may malfunction due to noises
	transmitted through the air. The following techniques are required.
	(1) Provide maximum clearance between easily affected devices and the servo amplifier.
1) 2) 3)	(2) Provide maximum clearance between easily affected signal cables and the I/O cables of the servo amplifier.
	(3) Avoid laying the power lines (I/O cables of the servo amplifier) and signal cables side by side or bundling them together.
	(4) Insert a line noise filter to the I/O cables or a radio noise filter on the input line.
	(5) Use shielded wires for signal and power cables or put cables in separate metal conduits.
	When the power lines and the signal cables are laid side by side or bundled together, magnetic
	induction noise and static induction noise will be transmitted through the signal cables and
	malfunction may occur. The following techniques are required.
	(1) Provide maximum clearance between easily affected devices and the servo amplifier.
4) 5) 6)	(2) Provide maximum clearance between easily affected signal cables and the I/O cables of the servo
	amplifier.
	(3) Avoid laying the power lines (I/O cables of the servo amplifier) and signal cables side by side or bundling them together.
	(4) Use shielded wires for signal and power cables or put the cables in separate metal conduits.
	When the power supply of peripheral devices is connected to the power supply of the servo amplifier
	system, noises produced by the servo amplifier may be transmitted back through the power supply
7)	cable and the devices may malfunction. The following techniques are required.
	(1) Insert the radio noise filter (FR-BIF) on the power cables of the servo amplifier.
	(2) Insert the line noise filter (FR-BIF·FR-BSF01) on the power cables of the servo amplifier.
	When a closed loop circuit is formed by the ground cables of the peripheral device and servo
8)	amplifier, a leakage current may flow through to malfunction the device. If so, malfunction may be
	prevented by disconnecting the grounding cable of the peripheral device.

(1) Data line filter

Noise can be prevented by installing a data line filter onto the encoder cable, etc. Example: Data line filter: ZCAT3035-1330 [TDK] ESD-SR-25 [Tokin]

Impedance specifications (ZCAT3035-1330)

Impedance[Ω]				
10 to 100MHz 100 to 500MHz				
80	150			

The above impedances are reference values and not guaranteed values.

(2) Surge suppressor

The recommended surge suppressor for installation to an AC relay, AC valve, AC electromagnetic brake or the like near the servo amplifier is shown below. Use this product or equivalent.

(Ex.) 972A–2003 50411 (Matsuo Electric Co.,Ltd.-200VAC rating)

> 18±1.5 (0.708±0.059)

> > 4 (0.15 31.5±1

(1.240±0.039)

Rated				Outline drawing [Unit: mm(in.)]
voltage AC[V]	C [μF]	R [Ω]	Test voltage AC[V]	Vinyl sheath
200	0.5	50 (1W)	Across T-C 1000(1~5s)	
				$\begin{array}{c c c c c c c c c c c c c c c c c c c $
				200 (7.870) 48 ±1.5 200 (7.870) or more (1.889±0.059) or more

Note that a diode should be installed to a DC relay, DC valve or the like.

Maximum voltage: Not less than 4 times the drive voltage of the relay or the like Maximum current: Not less than twice the drive current of the relay or the like

(3) Cable clamp fitting (AERSBAN-DSET)

Generally, the earth of the shielded cable may only be connected to the connector's SD terminal. However, the effect can be increased by directly connecting the cable to an earth plate as shown below. Install the earth plate near the servo amplifier for the encoder cable. Peel part of the cable sheath to expose the external conductor, and press that part against the earth plate with the cable clamp. If the cable is thin, clamp several cables in a bunch.

The clamp comes as a set with the earth plate.

Outline drawing

[Unit: mm (in.)]

Clamp section diagram

Note: Screw hole for grounding. Connect it to the earth plate of the control box.

Туре	А	В	С	Accessory fittings	
AEDODAN DOFT	100	86	30	alamp fitting: 2000	
AERSDAN-DSEI	(3.94)	(3.39)	(1.18)	ciamp intring: 2pcs.	
AEDODANI ECET	70	56		alaran Cittinan 1	
AEKSBAN-ESEI	(2.76)	(2.20)		clamp fitting: Tpc.	

Clamp fitting	L
٨	70
А	(2.76)
D	45
В	(1.77)

(4) Line noise filter (FR-BLF, FR-BSF01)

This filter is effective in suppressing noises radiated from the power supply side and output side of the servo amplifier and also in suppressing high-frequency leakage current (zero-phase current) especially within 0.5MHz to 5MHz band.

(5) Radio noise filter (FR-BIF)

This filter is effective in suppressing noises radiated from the power supply side of the servo amplifier especially in 10MHz and lower radio frequency bands. The FR-BIF is designed for the input only.

14.2.7 Leakage current breaker

(1) Selection method

High-frequency chopper currents controlled by pulse width modulation flow in the AC servo circuits. Leakage currents containing harmonic contents are larger than those of the motor which is run with a commercial power supply.

Select a leakage current breaker according to the following formula, and ground the servo amplifier, servo motor, etc. securely.

Make the input and output cables as short as possible, and also make the grounding cable as long as possible (about 30cm (11.8 in)) to minimize leakage currents.

Rated sensitivity current $\geq 10 \cdot \{Ig1+Ign+Iga+K \cdot (Ig2+Igm)\} \ [mA]$(14.2)

- Ig1: Leakage current on the electric channel from the leakage current breaker to the input terminals of the servo amplifier (Found from Fig. 14.1.)
- Ig2: Leakage current on the electric channel from the output terminals of the servo amplifier to the servo motor (Found from Fig. 14.1.)

Table 14.4 Servo Motor's Leakage

- Ign: Leakage current when a filter is connected to the input side (4.4mA per one FR-BIF)
- Iga: Leakage current of the servo amplifier (Found from Table 14.5.)
- Igm: Leakage current of the servo motor (Found from Table 14.4.)

Fig.14.1 Leakage Current per 1km Example (lg1,lg2)for CV Cable Run in Metal Conduit

Current Example (Igm)						
Servo motor output	Leakage					
[kW]	current [mA]					
0.05 to 0.5	0.1					
0.6 to 1.0	0.1					
1.2 to 2.2	0.2					
3, 3.5	0.3					
4.5	0.3					
5	0.5					
7	0.7					
11	1.0					
15	1.3					
22	2.3					

Table 14.5 Servo amplifier's
Leakage Current
Example (Iga)

Servo amplifier	Leakage		
	current [mA]		
All series	2		

Table 14.6 Leakage Circuit Breaker Selection Example

Servo amplifier	Rated sensitivity current of leakage circuit breaker	
MR-H10TN to MR-H350TN	15mA	
MR-H500TN	30mA	
MR-H700TN	50mA	
MR-H11KTN		
to MR-	100mA	
H22KTN		

(2) Selection example

Indicated below is an example of selecting a leakage current breaker under the following conditions:

Use a leakage current breaker generally available. Find the terms of Equation (14.2) from the diagram:

$$Ig1=20 \bullet \frac{5}{1000} = 0.1 \text{ [mA]}$$
$$Ig2=20 \bullet \frac{5}{1000} = 0.1 \text{ [mA]}$$

Ign=0 (not used)

Iga=0.1 [mA]

Igm=0.1 [mA]

Insert these values in Equation (14.2):

 $Ig \ge 10 \cdot \{0.1 + 0 + 0.1 + 3 \cdot (0.1 + 0.1)\}$

≥8.0 [mA]

According to the result of calculation, use a leakage current breaker having the rated sensitivity current (Ig) of 8.0[mA] or more. A leakage current breaker having Ig of 15[mA] is used with the NV-CA/CS/SS series.

14.2.8 Setting potentiometers for analog inputs

The following variable resistors are available for use with analog inputs such as override and analog torque commands:

(1) Single-revolution type

WA2WYA2SEBK2KQ (Japan Resistor make)

Rated power	Resistance	Resistance tolerance	dielectric strength (for 1 minute)	Insulation resistance	Mechanical rotary angle	Rotary torque
2W	2kΩ	±10%	700V A.C	100MΩor more	300° ±5°	10 to 100g-cm or less

connection diagram

Outline dimension drawing

(2) Multi-revolution type

RRS10(M)2KQ (Japan Resistor make)

Rated power	Resistance	Resistance tolerance	dielectric strength (for 1 minute)	Insulation resistance	Mechanical rotary angle	Rotary torque
1W	2kΩ	<u>±</u> 10%	700V A.C	$1000M\Omega$ or more	3600° +10° -0°	100g-cm or less

connection diagram

Outline dimension drawing

Panel hole machining diagram

[Unit: mm (in.)] Panel thickness: 2 to 6 (0.079 to 0.236)

14 - 51

MEMO

		-	

15. RS-232C COMMUNICATION FUNCTIONS

The MR-H-TN has the RS-232C serial communication functions. These functions can be used to perform servo operation, parameter changing, monitor function, etc.

- 15.1 Configuration
- (1) Outline

(2) Cable connection diagram

Wire as shown below. The communication cable for connection with the personal computer (MR-HPCATCBL3M • MR-HPC98CBL3M) is available. (Refer to Section 14.1.6.)

15.2 Communication specifications

Servo Amplifier is designed to send a reply on receipt of an instruction. The device which gives this instruction (Servo Amplifier) is called a master station and the device which sends a reply in response to the instruction (Servo Amplifier) is called a slave station. When fetching data successively, the master station repeatedly commands the slave station to send data.

15.3 Protocol

(1) Transmission of data from master station to slave station

Master station	S O H	- Command	S T X	Data No.	(Note) [Data	E T X	Check sum	9 frames + (data)				
Slave station									S T X	Error code	E T X	Check sum	
									Posi	tive i	resp	onse: Err	or code = A

Negative response: Error code = A

Note: Refer to (4) in this section for the number of data frames.

(2) Transmission of data request from master station to slave station

Note: Refer to (4) in this section for the number of data frames.

(3) Recovery of communication status by time-out

(4) Data frames

The data length depends on the command.

15.4 Character codes

(1) Control codes

Code name	Hexadecimal (ASCII code)	Description	Personal computer terminal key operation (General)
SOH	01H	start of head	ctrl + A
STX	02H	start of text	ctrl + B
ETX	03H	end of text	ctrl + C
EOT	04H	end of transmission	ctrl + D

(2) Codes for data

JIS8 unit codes are used.

010					 								
				\rightarrow	\mathbf{b}_8	0	0	0	0	0	0	0	0
				\rightarrow	b ₇	0	0	0	0	1	1	1	1
				\rightarrow	\mathbf{b}_6	0	0	1	1	0	0	1	1
				\rightarrow	b_5	0	1	0	1	0	1	0	1
I													
b ₈ to b ₅	b4	b_3	b_2	\mathbf{b}_1	R R	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL	DLE	Space	0	@	Р	,	р
	0	0	0	1	1	SOH	DC_1	!	1	Α	Q	а	q
	0	0	1	0	2	STX	DC_2	"	2	В	R	b	r
	0	0	1	1	3	ETX	DC ₃	#	3	С	S	с	s
	0	1	0	0	4			\$	4	D	Т	d	t
	0	1	0	1	5			%	5	Е	U	e	u
	0	1	1	0	6			&	6	F	V	f	v
	0	1	1	1	7			•	7	G	W	g	w
	1	0	0	0	8			(8	Н	Х	h	х
	1	0	0	1	9)	9	Ι	Y	i	у
	1	0	1	0	10			*	:	J	Ζ	j	z
	1	0	1	1	11			+	;	Κ	[k	{
	1	1	0	0	12			,	<	L	\	1	
	1	1	0	1	13			_	=	М]	m	}
	1	1	1	0	14				>	Ν	^	n	_
	1	1	1	1	15			/	?	0	_	0	DEL

15.5 Error codes

Error codes are used in the following cases and an error code of single-code length is transmitted. On receipt of data from the master station, the slave station sends the error code corresponding to that data to the master station.

Error code		F	Description	Pomorko		
Servo normal	Servo alarm	Error name	Description	Remarks		
[A]	[a]	Normal operation	Data transmitted was processed properly.	Positive response		
[B]	[b]	Parity error	Parity error occurred in the transmitted data.			
[C]	[c]] Checksum error Checksum error occurred in the transmitted data.		1		
וחו	[4]	Character error	Character not existing in the specifications was			
[D]	լսյ	Character error	transmitted.			
(F)	[م]	Command error	Command not existing in the specifications was	regative response		
[12]	[0]	Command error	transmitted.			
(F)	[f]	Data No. orror	Data No. not existing in the specifications was			
[1.]	[1]		transmitted.			
[J]	[j]	External reset ON	Reset (RES) turned on.	Special response		

15.6 Checksum

Checksum range

The checksum is sent as a JIS8-coded hexadecimal code representing the lower two digits of the sum of JIS8-coded hexadecimal values up to ETX, with the exception of the first control code (STX or SOH).

15 - 5

15.7 Time-out operation

The master station transmits EOT when the slave station does not start reply operation (STX is not received) 300[ms] after the master station has ended communication operation. 100[ms] after that, the master station retransmits the message. Time-out occurs if the slave station does not answer after the master station has performed the above operation three times. (Communication error)

		200mc	100)ms		300mc	10	0ms		200mc	10	0ms		300mc T	ime-out
Master station	Message	300115	E O T		Message	SUUMS	E O T		Message	300115	E O T		Message	5001115	7

Slave station

15.8 Retry operation

When a fault occurs in communication between the master and slave stations, the error code in the response data from the slave station is a negative response code ([B] to [I], [b] to [i]). In this case, the master station retransmits the message which was sent at the occurrence of the fault (Retry operation). A communication error occurs if the above operation is repeated and results in the error three or more consecutive times.

Similarly, when the master station detects a fault (e.g. checksum, parity) in the response data from the slave station, the master station retransmits the message which was sent at the occurrence of the fault. A communication error occurs if the retry operation is performed three times.

15.9 Initialization

After the slave station is switched on, it cannot reply to communication until the internal initialization processing terminates. Hence, at power-on, ordinary communication should be started after:

- 1) 1s or more time has elapsed after the slave station is switched on; and
- 2) Making sure that normal communication can be made by reading the parameter or other data which does not pose any safety problems.

15.10 Communication procedure example

The following example reads the setting of parameter No. 2:

15.11 Command and data No. list

15.11.1 Read commands

(1) Status display (Command [0][1])

Command	Data No.	Description	Display item	Frame length
[0][1]	[0][0]		Current position	16
[0][1]	[0][1]		Command position	16
[0][1]	[0][2]		Command remaining distance	16
[0][1]	[0][3]		Override	16
[0][1]	[0][4]		Position block	16
[0][1]	[0][5]		Command pulse value	16
[0][1]	[0][6]		Machine speed	16
[0][1]	[0][7]	Status display name and unit	Droop pulse	16
[0][1]	[0][8]		Torque limit command voltage	16
[0][1]	[0][9]		Regenerative load ratio	16
[0][1]	[0][A]		Effective load factor	16
[0][1]	[0][B]		Peak load ratio	16
[0][1]	[0][C]		Within one-revolution position	16
[0][1]	[0][D]		ABS counter	16
[0][1]	[0][E]		Servo motor speed	16
[0][1]	[0][F]		Bus voltage	16
[0][1]	[8][0]		Current position	12
[0][1]	[8][1]		Command position	12
[0][1]	[8][2]		Command remaining distance	12
[0][1]	[8][3]		Override	12
[0][1]	[8][4]		Position block	12
[0][1]	[8][5]		Command pulse value	12
[0][1]	[8][6]		Machine speed	12
[0][1]	[8][7]	Status display data value and	Droop pulse	12
[0][1]	[8][8]	processing information	Torque limit command voltage	12
[0][1]	[8][9]		Regenerative load ratio	12
[0][1]	[8][A]		Effective load factor	12
[0][1]	[8][B]		Peak load ratio	12
[0][1]	[8][C]		Within one-revolution position	12
[0][1]	[8][D]		ABS counter	12
[0][1]	[8][E]		Servo motor speed	12
[0][1]	[8][F]		Bus voltage	12

Command	Data No.	Description	Frame length
[0][5]	[0][0] to [4][F]	Present value of the corresponding parameter (The decimal equivalent of the data No. value(hexadecimal) corresponds to the parameter number)	8
[0][6]	[0][0] to [4][F]	Upper limit value of the corresponding parameter setting range (The decimal equivalent of the data No. value(hexadecimal) corresponds to the parameter number)	8
[0][7]	[0][0] to [4][F]	Lower limit value of the corresponding parameter setting range (The decimal equivalent of the data No. value(hexadecimal) corresponds to the parameter number)	8
[0][8]	[0][0] to [4][F]	Name of the corresponding parameter (The decimal equivalent of the data No. value(hexadecimal) corresponds to the parameter number)	12

(2) Parameter (Command [0][5] to [0][8])

(3) Alarm history (Command [3][3])

Command	Data No.	Description	Alarm occurrence sequence	Frame length
[3][3]	[1][0]		most recent alarm	4
[3][3]	[1][1]		first alarm in past	4
[3][3]	[1][2]		second alarm in past	4
[3][3]	[1][3]		third alarm in past	4
[3][3]	[1][4]		fourth alarm in past	4
[3][3]	[1][5]	Alarm number in alarm history	fifth alarm in past	4
[3][3]	[1][6]		sixth alarm in past	4
[3][3]	[1][7]		seventh alarm in past	4
[3][3]	[1][8]		eighth alarm in past	4
[3][3]	[1][9]		ninth alarm in past	4
[3][3]	[2][0]		most recent alarm	8
[3][3]	[2][1]		first alarm in past	8
[3][3]	[2][2]		second alarm in past	8
[3][3]	[2][3]		third alarm in past	8
[3][3]	[2][4]	Alarm occurrence time in alarm	fourth alarm in past	8
[3][3]	[2][5]	history	fifth alarm in past	8
[3][3]	[2][6]		sixth alarm in past	8
[3][3]	[2][7]		seventh alarm in past	8
[3][3]	[2][8]		eighth alarm in past	8
[3][3]	[2][9]		ninth alarm in past	8
[3][3]	[3][0]		most recent alarm	12
[3][3]	[3][1]		first alarm in past	12
[3][3]	[3][2]		second alarm in past	12
[3][3]	[3][3]		third alarm in past	12
[3][3]	[3][4]		fourth alarm in past	12
[3][3]	[3][5]		fifth alarm in past	12
[3][3]	[3][6]		sixth alarm in past	12
[3][3]	[3][7]		seventh alarm in past	12
[3][3]	[3][8]		eighth alarm in past	12
[3][3]	[3][9]		ninth alarm in past	12
Command	Data No.	Description	Frame length	
---------	----------	-------------------------	--------------	
[0][2]	[0][0]	Current alarm number	4	
[0][2]	[0][1]	Current alarm name	12	
[0][2]	[0][8]	Concurrent alarm number	4	
[0][2]	[0][9]	Concurrent alarm name	12	

(4) Current alarm (Command [0][2] • [3][5])

Command	Data No.	Description	Status display item	Frame length
[3][5]	[0][0]		Current position	16
[3][5]	[0][1]		Command position	16
[3][5]	[0][2]		Command remaining distance	16
[3][5]	[0][3]		Override	16
[3][5]	[0][4]		Position block	16
[3][5]	[0][5]		Command pulse value	16
[3][5]	[0][6]		Machine speed	16
[3][5]	[0][7]	Status display name and unit at alarm	Droop pulse	16
[3][5]	[0][8]	occurrence	Torque limit command voltage	16
[3][5]	[0][9]		Regenerative load ratio	16
[3][5]	[0][A]		Effective load factor	16
[3][5]	[0][B]		Peak load ratio	16
[3][5]	[0][C]		Within one-revolution position	16
[3][5]	[0][D]		ABS counter	16
[3][5]	[0][E]		Servo motor speed	16
[3][5]	[0][F]		Bus voltage	16
[3][5]	[8][0]		Current position	12
[3][5]	[8][1]		Command position	12
[3][5]	[8][2]		Command remaining distance	12
[3][5]	[8][3]		Override	12
[3][5]	[8][4]		Position block	12
[3][5]	[8][5]		Command pulse value	12
[3][5]	[8][6]		Machine speed	12
[3][5]	[8][7]	Status display data value and processing	Droop pulse	12
[3][5]	[8][8]	information at alarm occurrence	Torque limit command voltage	12
[3][5]	[8][9]		Regenerative load ratio	12
[3][5]	[8][A]		Effective load factor	12
[3][5]	[8][B]		Peak load ratio	12
[3][5]	[8][C]		Within one-revolution position	12
[3][5]	[8][D]		ABS counter	12
[3][5]	[8][E]		Servo motor speed	12
[3][5]	[8][F]		Bus voltage	12

(5) External I/O signals (command [3][4])

The signals corresponding to the data numbers change with the feeding system and the number of occupied stations.

				Signal abb	previations			
				0.3	Roll fe	eding	1	
Command	Data No.	Description	Positionir	ng system	SVS	tem	Frame length	
			1 station	2 stations	1 station	2 stations		
			occupied	occupied	occupied	occupied		
[3][4]	[1][1]		SON	SON	SON	SON	4	
[3][4]	[1][2]	1	DI0	LSP	DEC	DEC	4	
[3][4]	[1][3]	1	DI1	LSN	JFS	JFS	4	
[3][4]	[1][4]	1	DI2	DOG	STP	STP	4	
[3][4]	[1][5]	1	LSP	MD0	TL	TL	4	
[3][4]	[1][6]	1	LSN	STP	PS2	PS2	4	
[3][4]	[1][7]	1	DOG	ORG	CR	CR	4	
[3][4]	[1][8]	1	MD0	ST1	MD0	MD0	4	
[3][4]	[1][9]	1	STP	ST2	MD1	MD1	4	
[3][4]	[1][A]	1	ORG	MOR	MD2	MD2	4	
[3][4]	[1][B]	1	ST1	COR	ST1	ST1	4	
[3][4]	[1][C]	External input signal name and	ST2	TL	ST2	ST2	4	
[3][4]	[1][D]	ON/OFF status	MOR	PSR	MOR	MOR	4	
[3][4]	[1][E]	1	COR	SPR	COR	COR	4	
[3][4]	[1][F]	1	TL	OVR	PSR		4	
[3][4]	[2][0]	1	RES	TP0	RES	SPR	4	
[3][4]	[2][1]	1	EMG	TP1	EMG	OVR	4	
[3][4]	[2][2]	1	RES	TP0			4	
[3][4]	[2][3]	1	EMG	TP1	\sim	\sim	4	
[3][4]	[2][4]	1	LSP	\sim	\sim	\sim	4	
[3][4]	[2][5]	1	LSN	\sim	\sim	\sim	4	
[3][4]	[2][6]	1	RES	\sim	\sim	\sim	4	
[3][4]	[2][7]	1	EMG	\sim	\sim	\sim	4	
[3][4]	[9][1]		RD	RD	RD	RD	4	
[3][4]	[9][2]	1	INP	INP	INP	INP	4	
[3][4]	[9][3]	1	СРО	СРО	СРО	СРО	4	
[3][4]	[9][4]	1	ZP	ZP	AC0	AC0	4	
[3][4]	[9][5]	1	MC0	AC0	AC1	AC1	4	
[3][4]	[9][6]	1	MC1	AC1	AC2	AC2	4	
[3][4]	[9][7]	1	AC0	AC2	AC3	AC3	4	
[3][4]	[9][8]	1	AC1	AC3	TLC	TLC	4	
[3][4]	[9][9]	External output signal name and	AC2	TLC	MBR	MBR	4	
[3][4]	[9][A]	ON/OFF status	AC3	MBR	MOF	MOF	4	
[3][4]	[9][B]	1	TLC	MOF	COF	COF	4	
[3][4]	[9][C]	1	MBR	COF	WNG	WNG	4	
[3][4]	[9][D]	1	MOF	WNG	ALM	PSF	4	
[3][4]	[9][E]	1	COF	PSF	CRD	SPF	4	
[3][4]	[9][F]	1	WNG	SPF	OP	ALM	4	
[3][4]	[A][0]	1	CRD	CRD	CRD		4	
[3][4]	[A][1]	1	ALM	ALM	OP	\sim	4	
[3][4]	[A][2]	1	OP	OP	\sim	\sim	4	

(6) Position block

(a) Position data (command [4][0] to [4][3])

Command	Data No.	Description	Frame length
[4][0]	[0][0] to [F][F]	Data form and data of position data The decimal equivalent of the data No. corresponds to the position block No.	8
[4][1]	[0][0] to [F][F]	Setting range of position data (upper limit value) The decimal equivalent of the data No. corresponds to the position block No.	8
[4][2]	[0][0] to [F][F]	Setting range of position data (lower limit value) The decimal equivalent of the data No. corresponds to the position block No.	8
[4][3]	[2][0]	Display unit of position data	8

(b) M code (command [4][5] to [4][8])

Command	Data No.	Description	Frame length
[4][5]	[0][0] to [F][F]	Data form and data of M code The decimal equivalent of the data No. corresponds to the position block No.	8
[4][6]	[0][0] to [F][F]	Setting range of M code (upper limit value) The decimal equivalent of the data No. corresponds to the position block No.	8
[4][7]	[0][0] to [F][F]	Setting range of M code (lower limit value) The decimal equivalent of the data No. corresponds to the position block No.	8
[4][8]	[2][0]	Display unit of M code	8

(c) Speed block No. (command [4][A] to [4][D])

Command	Data No.	Description	Frame length
[4][A]	[0][0] to	Data form and data of speed block No.	0
[4][A]	[F][F]	The decimal equivalent of the data No. corresponds to the position block No.	8
[4][D]	[0][0] to	Setting range of speed block No. (upper limit value)	0
[4][D]	[F][F]	The decimal equivalent of the data No. corresponds to the position block No.	8
[4][C]	[0][0] to	Setting range of speed block No. (lower limit value)	0
[4][C]	[F][F]	The decimal equivalent of the data No. corresponds to the position block No.	8
[4][D]	[2][0]	Display unit of speed block No.	8

(7) Speed block

(a) Speed (commands [5][0] to [5][3])

Command	Data No.	Description	Frame length
[5][0]	[0][1] to [0][8]	Data form and data of speed The decimal equivalent of the data No. corresponds to the speed block No.	8
[5][1]	[0][1] to [0][8]	Setting range of speed (upper limit value) The decimal equivalent of the data No. corresponds to the speed block No.	8
[5][2]	[0][0] to [0][8]	Setting range of speed (lower limit value) The decimal equivalent of the data No. corresponds to the speed block No.	8
[5][3]	[2][0]	Display unit of speed	8

(b) Acceleration time constant (commands [5][4] to [5][7])

Command	Data No.	Description	Frame length
[5][4]	[0][1] to [0][8]	Data form and data of acceleration time constant The decimal equivalent of the data No. corresponds to the speed block No.	8
[5][5]	[0][1] to [0][8]	Setting range of acceleration time constant (upper limit value) The decimal equivalent of the data No. corresponds to the speed block No.	8
[5][6]	[0][0] to [0][8]	Setting range of acceleration time constant (lower limit value) The decimal equivalent of the data No. corresponds to the speed block No.	8
[5][7]	[2][0]	Display unit of acceleration time constant	8

(c) Deceleration time constant (commands [5][8] to [5][B])

Command	Data No.	Description	Frame length
[5][0]	[0][1] to	Data form and data of deceleration time constant	0
[3][8]	[0][8]	The decimal equivalent of the data No. corresponds to the speed block No.	8
[5][0]	[0][1] to	Setting range of deceleration time constant (upper limit value)	8
[2][8]	[0][8]	The decimal equivalent of the data No. corresponds to the speed block No.	
[2][A]	[0][0] to	Setting range of deceleration time constant (lower limit value)	0
[ɔ][A]	[0][8]	The decimal equivalent of the data No. corresponds to the speed block No.	8
[5][B]	[2][0]	Display unit of deceleration time constant	8

(d) S-pattern time constant (commands [5][C] to [5][F])

Command	Data No.	Description	Frame length
[5][C]	[0][1] to	Data form and data of S-pattern time constant	8
[0][0]	[0][8]	The decimal equivalent of the data No. corresponds to the speed block No.	0
[5][D]	[0][1] to	Setting range of S-pattern time constant (upper limit value)	o
[ວ][ບ]	[0][8]	The decimal equivalent of the data No. corresponds to the speed block No.	8
[5][5]	[0][0] to	Setting range of S-pattern time constant (lower limit value)	0
[3][E]	[0][8]	The decimal equivalent of the data No. corresponds to the speed block No.	8
[5][F]	[2][0]	Display unit of S-pattern time constant	8

15.11.2 Write commands

(1) Japanese-English switch-over (command [8][0])

Command	Data No.	Description	Setting range	Frame length
[8][0]	[0][0]	Japanese-English switch-over 0000: Japanese 0001: English	0000 • 0001	4

(2) Status display (command [8][1])

Command	Data No.	Description	Setting range	Frame length
[8][1]	[0][0]	Status display data clear	1EA5	4

(3) Manual operation of roll feeding system (command [8][1])

Command	Data No.	Description	Setting range	Frame length
[8][1]	[2][0]	FWD key of parameter unit in manual operation mode of roll feeding system 1EA5: Forward rotation JOG start 5AE1: Forward rotation JOG end	1EA5 • 5AE1	4
[8][1]	[2][1]	REV key of parameter unit in manual operation mode of roll feeding system 1EA5: Reverse rotation JOG start 5AE1: Reverse rotation JOG end	1EA5 • 5AE1	4
[8][1]	[2][2]	1STEP key of parameter unit in manual operation mode of roll feeding system 1-step operation start	1EA5	4

(4) Alarm (command [8][2])

Command	Data No.	Description	Setting range	Frame length
[8][2]	[0][0]	Alarm clear	1EA5	4
[8][2]	[2][0]	Alarm history clear	1EA5	4
[8][2]	[5][0]	Analog output of data before alarm occurrence	1EA5	4

(5) Parameter (command [8][4])

Command	Data No.	Description	Setting range	Frame length
[8][4]	[0][0] to [4][F]	Each parameter write The decimal equivalent of the data No. value (hexadecimal) corresponds to the parameter number.	Depends on the parameter.	8

(6) Operation mode selection (command [8][B])

Command	Data No.	Description	Setting range	Frame length
[8][B]	[0][0]	Operation mode changing 0000: Exit from test operation mode 0001: JOG operation 0002: Positioning operation 0003: Motor-less operation 0004: DO forced output (output signal forced output) 0005: 1 step feed operation	0000 to 0005	4

(7) DO forced output (command [8][B])

The signals corresponding to the data numbers change with the feeding system and the number of occupied stations.

				Signal abb	previations			
			Desitionir	a ovetem	Roll fe	eeding		
Command	command Data No.	Description	FUSILIONII	ig system	system		Setting range	Frame length
			1 station	2 stations	1 station	2 stations		
			occupied	occupied	occupied	occupied		
[8][B]	[8][1]		RD	RD	RD	RD	0000 • 0001	4
[8][B]	[8][2]		INP	INP	INP	INP	0000 • 0001	4
[8][B]	[8][3]		CPO	CPO	CPO	CPO	0000 • 0001	4
[8][B]	[8][4]		ZP	ZP	AC0	AC0	0000 • 0001	4
[8][B]	[8][5]		MC0	AC0	AC1	AC1	0000 • 0001	4
[8][B]	[8][6]		MC1	AC1	AC2	AC2	0000 • 0001	4
[8][B]	[8][7]		AC0	AC2	AC3	AC3	0000 • 0001	4
[8][B]	[8][8]		AC1	AC3	TLC	TLC	0000 • 0001	4
[8][B]	[8][9]	DO forced output	AC2	TLC	MBR	MBR	0000 • 0001	4
[8][B]	[8][A]	0000: OFF	AC3	MBR	MOF	MOF	0000 • 0001	4
[8][B]	[8][B]	0001. 01	TLC	MOF	COF	COF	0000 • 0001	4
[8][B]	[8][C]		MBR	COF	WNG	WNG	0000 • 0001	4
[8][B]	[8][D]		MOF	WNG	CRD	PSF	0000 • 0001	4
[8][B]	[8][E]		COF	PSF	ALM	SPF	0000 • 0001	4
[8][B]	[8][F]		WNG	SPF	CRD		0000 • 0001	4
[8][B]	[9][1]		CRD	CRD	ALM		0000 • 0001	4
[8][B]	[9][2]		ALM	ALM	\sum		0000 • 0001	4
[8][B]	[9][3]		\square	/			0000 • 0001	4

(8) External input signal disable (command [9][0])

Command	Data No.	Description	Setting range	Frame length
[9][0]	[0][0]	Turns off the external input signals (DI), external analog input signals and pulse train inputs with the exception of EMG, LSP and LSN, independently of the external ON/OFF statuses.	1EA5	4
[9][0]	[0][1]	Disables only the external input signals (DI) with the exception of EMG, LSP and LSN.	1EA5	4
[9][0]	[0][2]	Disables only the external analog input signals.	1EA5	4
[9][0]	[0][3]	Changes the external output signals (DO) into the value of command [8][B] or command [A][0] + data No. [0][1].	1EA5	4
[9][0]	[1][0]	Enables the disabled external input signals (DI), external analog input signals and pulse train inputs with the exception of EMG, LSP and LSN.	1EA5	4
[9][0]	[1][1]	Enables the disabled external input signals (DI) with the exception of EMG, LSP and LSN.	1EA5	4
[9][0]	[1][2]	Enables the disabled external analog input signals.	1EA5	4
[9][0]	[1][3]	Enables the disabled external output signals (DO).	1EA5	4

Command	Data No.	Description	Setting range	Frame length
[A][0]	[0][0]	Forces the external input signals except EMG, LSP and LSN to turn ON/OFF.	00000000 to FFFFFFFF	8
[A][0]	[0][1]	Forces the external output signals to turn ON/OFF.	00000000 to FFFFFFFF	8
[A][0]	[0][2]	Forces the external input signals to turn ON/OFF.	00000000 to FFFFFFFF	8
[A][0]	[0][3]	Forces the external output signals to turn ON/OFF.	00000000 to FFFFFFFF	8

(9) Forced ON/OFF of external I/O signals (DIO) (Command [A][0])

(10) Data for test operation mode (command [A][0])

Command	Data No.	Description	Setting range	Frame length
[A][0]	[1][0]	Writes the speed of the test operation mode (JOG operation, positioning operation).	0000 to 7FFF	4
[A][0]	[1][1]	Writes the acceleration/deceleration time constant of the test operation mode (JOG operation, positioning operation).	00000000 to 7FFFFFFF	8
[A][0]	[1][2]	Clears the acceleration/deceleration time constant of the test operation mode (JOG operation, positioning operation).	1EA5	4
[A][0]	[1][3]	Writes the moving distance (in pulses) of the test operation mode (positioning operation).	80000000 to 7FFFFFFF	8
[A][0]	[1][5]	Temporary stop command of the test operation mode (positioning operation)	1EA5	4
[A][0]	[1][A]	Writes the position block No. of the test operation mode (1 step feed operation).	00000000 to 000000FF	8
[A][0]	[1][B]	"1 STEP" key of test operation mode (1-step feed operation)	1EA5	4

(11) Position block data (commands [C][0], [C][2], [C][4])

Command	Data No.	Description	Setting range	Frame length
[C][0]	[0][0] to [F][F]	Position data The decimal equivalent of the data No. corresponds to the position block No.	According to commands [4][1] and [4][2]	8
[C][2]	[0][0] to [F][F]	M code The decimal equivalent of the data No. corresponds to the position block No.	According to commands [4][6] and [4][7]	8
[C][4]	[0][0] to [F][F]	Speed block No. The decimal equivalent of the data No. corresponds to the position block No.	According to commands [4][B] and [4][C]	8

Command	Data No.	Description	Setting range	Frame length
[C][6]	[0][1] to [0][7]	Speed The decimal equivalent of the data No. corresponds to the speed block No.	According to commands [5][1] and [5][2]	8
[C][7]	[0][1] to [0][7]	Acceleration time constant The decimal equivalent of the data No. corresponds to the speed block No.	According to commands [5][5] and [5][6]	8
[C][8]	[0][1] to [0][7]	Deceleration time constant The decimal equivalent of the data No. corresponds to the speed block No.	According to commands [5][9] and [5][A]	8
[C][9]	[0][1] to [0][7]	S-pattern time constant The decimal equivalent of the data No. corresponds to the speed block No.	According to commands [5][D] and [5][E]	8

(12) Speed block data (commands [C][6] to [C][9])

15.12 Detailed explanations of commands

15.12.1 Data processing

When the master station transmits a command + data No. or a command + data No. + data to a slave station, the servo amplifier returns a reply or data according to the purpose.

When numerical values are represented in these send data and receive data, they are represented in decimal, hexadecimal, etc.

Therefore, data must be processed according to the application.

Since whether data must be processed or not and how to process data depend on the monitoring, parameters, etc., follow the detailed explanation of the corresponding command.

The following methods are how to process send and receive data when reading and writing data.

(1) Processing the read data

When the display type is 0, the eight-character data is converted from hexadecimal to decimal and a decimal point is placed according to the decimal point position information. When the display type is 1, the eight-character data is used unchanged.

The following example indicates how to process the receive data "003000000929" given to show. The receive data is as follows.

Since the display type is "0" in this case, the hexadecimal data is converted into decimal. $00000929H{\rightarrow}2345$

As the decimal point position is "3", a decimal point is placed in the third least significant digit. Hence, "23.45" is displayed.

(2) Writing the processed data

When the data to be written is handled as decimal, the decimal point position must be specified. If it is not specified, the data cannot be written. When the data is handled as hexadecimal, specify "0" as the decimal point position.

The data to be sent is the following value.

By way of example, here is described how to process the set data when a value of "15.5" is sent. Since the decimal point position is the second digit, the decimal point position data is "2". As the data to be sent is hexadecimal, the decimal data is converted into hexadecimal. $155\rightarrow 9B$

Hence, "0200009B" is transmitted.

15.12.2 Status display

- (1) Reading the status display name and unit
 - Read the status display name and unit.
 - (a) Transmission

Transmit command [0][1] and the data No. corresponding to the status display item to be read, [0][0] to [0][F]. (Refer to Section 15.11.1.)

(b) Reply

The slave station sends back the status display name and unit requested.

0	0														
		_					_								
		Unit	chara	acters	s (5 c	ligits)	Ν	lame	chai	acte	rs (9	digits	3)	

(2) Status display data read

Read the status display data and processing information.

(a) Transmission

Transmit command [0][1] and the data No. corresponding to the status display item to be read. (Refer to Section 15.11.1.)

(b) Reply

The slave station sends back the status display data requested.

(3) Status display data clear

The cumulative feedback pulse data of the status display is cleared. Send this command immediately after reading the status display item. The data of the status display item transmitted is cleared to zero.

Command	Data No.	Data
[8][1]	[0][0]	1EA5

For example, after sending command [0][1] and data No. [8][0] and receiving the status display data, send command [8][1], data No. [0][0] and data [1EA5] to clear the cumulative feedback pulse value to zero.

15.12.3 Parameters

(1) Reading the name

Read the parameter name.

(a) Transmission

Transmit command [0][8] and the data No. corresponding to the parameter No., [0][0] to [6][3]. (Refer to Section 15.11.1.)

(b) Reply

The slave station sends back the name of the parameter No. requested.

(2) Reading the setting

Read the parameter setting.

(a) Transmission

Transmit command [0][5] and the data No. corresponding to the parameter No., [0][0] to [6][3]. (Refer to Section 15.11.1.)

(b) Reply

The slave station sends back the data and processing information of the parameter No. requested.

(For example)

Data "1201869F" means 9999.9 (decimal display format). Data "0023ABC" means 23ABC (hexadecimal display format).

Data "01FFF053" means 053 (special hexadecimal display format).

"000000" is transferred when the parameter that was read is the one inaccessible for write/reference in the parameter write disable setting of parameter No. 20.

(3) Reading the setting range

Read the parameter setting range.

(a) Transmission

When reading the upper limit value, transmit command [0][6] and the data No. corresponding to the parameter No., [0][0] to [6][3]. When reading the lower limit value, transmit command [0][7] and the data No. corresponding to the parameter No., [0][0] to [6][3]. (Refer to Section 15.11.1.)

(b) Reply

The slave station sends back the data and processing information of the parameter No. requested.

Data is transferred in hexadecimal.

For example, data "10FFFFEC" means -20.

(4) Parameter write

POINT • The number of parameter write times is restricted to 100,000 times.

Write the parameter setting into EEP-ROM of the MR-H-TN.

Write the value within the setting enabled range. For the setting enabled range, refer to Section 7.2 or read the setting range by performing operation in (3) of this section.

Transmit command [8][4], the data No. corresponding to the parameter No., and the set data.

When the data to be written is handled as decimal, the decimal point position must be specified. If it is not specified, data cannot be written. When the data is handled as hexadecimal, specify 0 as the decimal point position.

Write the data after making sure that it is within the upper/lower limit value range.

Read the parameter data to be written, confirm the decimal point position, and create transmission data to prevent error occurrence. On completion of write, read the same parameter data to verify that data has been written correctly.

Write cannot be performed to the parameters which are not enabled for write in parameter No. 20.

- 15.12.4 External I/O signal status (DIO diagnosis)
- (1) Reading the external input signal ON/OFF status

Read the ON/OFF status of the external input signal. When the master station transmits the data No. to the slave station, the slave station sends back the corresponding ON/OFF status to the master station.

(a) Transmission

Transmit command [3][4] and the data No. corresponding to the input signal to be read. (Refer to Section 15.11.1.)

(b) Reply

The slave station sends back the ON/OFF status of the input signal requested.

(2) Reading the external output signal ON/OFF status

Read the ON/OFF status of the external output signal. When the master station transmits the data No. to the slave station, the slave station sends back the corresponding ON/OFF status to the master station.

(a) Transmission

Transmit command [3][4] and the data No. corresponding to the output signal to be read. (Refer to Section 15.11.1.)

(b) Reply

The slave station sends back the ON/OFF status of the output signal requested.

15.12.5 External output signal ON/OFF (DO forced output)

In the test operation mode, any output signal can be turned on/off independently of its status. Using command [9][0], disable the output signals in advance.

(1) Choosing DO forced output in test operation mode

Transmit command [8][B] + data No. [0][0] + data "0004" to choose DO forced output.

Selection of test operation mode 4: DO forced output (output signal forced output)

0:OFF

(2) Turning the output signal ON/OFF signal-by-signal

Transmit command [8][B] + data No. corresponding to the output signal, [8][1] to [8][6], and the data which means ON/OFF. (Refer to Section 15.11.1.)

(3) Turning all output signals ON/OFF at once Transmit the following communication commands:

Command	Data No.	Setting data			
[A][0]	[0][1]	See below.			
	b31		 	 b1 b0	
					1
					0

Command of each bit is sent to the slave station in hexadecimal.

(a) Positioning system

1) Data No.[0][1]

bit	Signal abbreviation
0	RD
1	INP
2	СРО
3	ZP
4	MC0
5	MC1
6	AC0
7	AC1

bit	Signal abbreviation
8	AC2
9	AC3
10	TLC
11	MBR
12	MOF
13	COF
14	WNG
15	

bit	Signal abbreviation
16	PSF
17	SPF
18	
19	
20	
21	
22	
23	

bit	Signal abbreviation
24	
25	
26	
27	
28	
29	
30	
31	

2) Data No.[0][3]

bit	Signal abbreviation
0	
1	
2	
3	
4	
5	
6	
7	

hit	Signal
DIL	abbreviation
8	
9	
10	ALM
11	CRD
12	
13	
14	
15	

bit	Signal abbreviation
16	
17	
18	
19	
20	
21	
22	
23	

bit	Signal abbreviation
24	
25	
26	
27	
28	
29	
30	
31	

(b) Roll feeding system1) Data No.[0][1]

bit	Signal abbreviation
0	RD
1	INP
2	СРО
3	
4	
5	
6	AC0
7	AC1

bit	Signal abbreviation
8	AC2
9	AC3
10	TLC
11	MBR
12	MOF
13	COF
14	WNG
15	

bit	Signal abbreviation
16	PSF
17	SPF
18	
19	
20	
21	
22	
23	

bit	Signal abbreviation
24	
25	
26	
27	
28	
29	
30	
31	

2) Data No.[0][3]

bit	Signal abbreviation
0	
1	
2	
3	
4	
5	
6	
7	

bit	Signal abbreviation
8	
9	
10	ALM
11	CRD
12	
13	
14	
15	

bit	Signal abbreviation
16	
17	
18	
19	
20	
21	
22	
23	

bit	Signal abbreviation
24	
25	
26	
27	
28	
29	
30	
31	

15.12.6 External input signal ON/OFF

With the exception of EMG, LSP and LSN, the input signals can be turned on/off independently of their statuses. Using command [9][0], disable the external input signals in advance.

(1) Positioning system

(a) Data No.[0][0]

bit	Signal abbreviation
0	SON
1	DI0
2	DI1
3	DI2
4	
5	
6	DOG
7	MD0

bit	Signal abbreviation
8	STP
9	ORG
10	ST1
11	ST2
12	MOR
13	COR
14	TL
15	

Signal abbreviation
PSR
SPR
OVR
TP0
TP1

bit	Signal abbreviation
24	
25	
26	
27	
28	
29	
30	
31	

(b) Data No.[0][2]

bit	Signal abbreviation
0	
1	
2	
3	
4	
5	
6	
7	

bit	Signal abbreviation
8	
9	
10	RES
11	
12	
13	
14	
15	

bit	Signal abbreviation
16	
17	
18	
19	
20	
21	
22	
23	

bit	Signal abbreviation
24	
25	
26	
27	
28	
29	
30	
31	

(2) Roll feeding system

(a) Data No.[0][0]

bit	Signal abbreviation
0	SON
1	DEC
2	JFS
3	STP
4	TL
5	PS2
6	CR
7	MD0

bit	Signal abbreviation
8	MD1
9	MD2
10	ST1
11	ST2
12	MOR
13	COR
14	
15	

bit	Signal abbreviation
16	PSR
17	SPR
18	OVR
19	TP0
20	TP1
21	
22	
23	

bit	Signal abbreviation
24	
25	
26	
27	
28	
29	
30	
31	

(b) Data No.[0][2]

bit	Signal abbreviation
0	
1	
2	
3	
4	
5	
6	
7	

bit	Signal
	abbreviation
8	
9	
10	RES
11	
12	
13	
14	
15	

bit	Signal abbreviation
16	
17	
18	
19	
20	
21	
22	
23	

bit	Signal abbreviation
24	
25	
26	
27	
28	
29	
30	
31	

15.12.7 Disable/enable of external I/O signals (DIO)

Inputs can be disabled independently of the external I/O signal ON/OFF. When inputs are disabled, the input signals are recognized as follows. Among the external input signals, EMG, LSP and LSN cannot be disabled.

Signal	Status
External input signals (DI)	OFF
External analog input signals	0V
Pulse train inputs	None

(1) Disabling/enabling the external input signals (DI), external analog input signals and pulse train inputs with the exception of EMG, LSP and LSN.

Transmit the following communication commands:

(a) Disable

Command	Data No.	Data
[9][0]	[0][0]	1EA5

(b) Enable

Command	Data No.	Data
[9][0]	[1][0]	1EA5

(2) Disabling/enabling only the external input signals (DI) with the exception of EMG, LSP and LSN. Transmit the following communication commands:

(a) Disable

Command	Data No.	Data	
[9][0]	[0][1]	1EA5	

(b) Enable

Command	Data No.	Data	
[9][0]	[1][1]	1EA5	

(3) Disabling/enabling only the external analog input signals. Transmit the following communication commands:

(a) Disable

Command	Data No.	Data	
[9][0]	[0][2]	1EA5	

(b) Enable

Command	Data No.	Data	
[9][0]	[1][2]	1EA5	

(4) Disabling/enabling the external output signals (DO) Transmit the following communication commands:

(a) Disable

Command	Data No.	Data
[9][0]	[0][3]	1EA5

(b) Enable

Command	Data No.	Data	
[9][0]	[1][3]	1EA5	

15.12.8 Test operation mode

(1) Instructions for test operation mode

The test operation mode must be executed in the following procedure. If communication is interrupted for longer than 0.5s during test operation, the MR-H-TN causes the motor to be decelerated to a stop and servo-locked. To prevent this, continue communication without a break, e.g. monitor the status display.

1) Turn off all external input signals.

2) Disable the external input signals.

Command	Data No.	Data	
[9][0]	[0][0]	1EA5	

3) Choose the test operation mode.

Command	Data No.	Transmission data	Selection of test operation mode
[8][B]	[0][0]	0000	Test operation mode cancel
[8][B]	[0][0]	0001	JOG operation
[8][B]	[0][0]	0002	Positioning operation
[8][B]	[0][0]	0003	Motor-less operation
[8][B]	[0][0]	0004	DO forced output
[8][B]	[0][0]	0005	1 step feed operation

4) Set the data needed for test operation.

5) Start.

6) Continue communication using the status display or other command.

To terminate the test operation mode, complete the corresponding operation and: 1) Clear the test operation acceleration/deceleration time constant.

Command	Data No.	Data	
[A][0]	[1][2]	1EA5	

2) Cancel the test operation mode.

Command	Data No.	Data	
[8][B]	[0][0]	0000	

3) Enable the disabled external input signals.

Command	Data No.	Data	
[9][0]	[1][0]	1EA5	

(2) JOG operation

Transmit the following communication commands:

(a) Setting of JOG operation data

Item	Command	Data No.	Data
Speed	[A][0]	[1][0]	Write the speed [r/min] in hexadecimal.
Acceleration/deceleration	[A][0]	[1][1]	Write the acceleration/deceleration time constant [ms] in
time constant	[A][0]	[1][1]	hexadecimal.

(b) Start

Turn on the external I/O signals SON and ST1/ST2 by using command [A][0] + data No. [0][0].

Item	Command	Data No.	Data
Forward rotation start	[A][0]	[0][0]	00000401: Turns on SON and ST1.
Reverse rotation start	[A][0]	[0][0]	00000801: Turns on SON and ST2.

(c) Stop

Turn off ST1/ST2 using command [A][0] + data No. [0][0].

Item	Command	Data No.	Data
Stop	[A][0]	[0][0]	00000001: Turns on SON only.

(3) Positioning operation

Transmit the following communication commands:

(a) Setting of positioning operation data

Item	Command	Data No.	Data
Speed	[A][0]	[1][0]	Write the speed [r/min] in hexadecimal.
Acceleration/deceleration	[A][0] [1][1]	[1][1]	Write the acceleration/deceleration time constant [ms] in
time constant		hexadecimal.	
Moving distance	[A][0]	[1][3]	Write the moving distance [pulse] in hexadecimal.

(b) Start

Turn on the external I/O signals SON and ST1/ST2 by using command [A][0] + data No. [0][0].

Item	Command	Data No.	Data
Forward rotation start	[A][0]	[0][0]	00000401: Turns on SON and ST1.
Reverse rotation start	[A][0]	[0][0]	00000801: Turns on SON and ST2.

(c) Temporary stop

A temporary stop can be made during positioning operation.

Command	Data No.	Data
[A][0]	[1][5]	1EA5

Retransmit the same communication commands as at the start time to resume operation.

To stop positioning operation after a temporary stop, retransmit the temporary stop communication command. The remaining moving distance is then cleared.

(4) 1-step feed operation

Transmit the following communication commands:

(a) Setting of the position data No. to be executed

Displayed in hexadecimal

(b) Start

Item	Command	Data No.	Data
1-step feed	[A][0]	[1][B]	1E5A

Using command [A][0] + data No. [0][0], switch on SON of the external I/O signals.

Item	Command	Data No.	Data
Servo on	[A][0]	[0][0]	00000001 : on SON
Item	Command	Data No.	Data
1-step feed	[A][0]	[1][B]	1E5A

(c) Temporary stop

You can make a temporary stop during 1-step feed operation.

Command	Data No.	Data
[A][0]	[1][5]	1E5A

Transmitting the 1-step feed communication command again resumes operation. At this time, SON need not be switched on again.

To stop the 1-step feed operation after a temporary stop, transmit the temporary stop communication command again. This clears the remaining moving distance.

15.12.9 Alarm history

The alarm numbers, occurrence times and name of No.0 (last alarm) to No.9 (ten alarm in the past) are read.

(1) Alarm No. read

Read the alarm No. which occurred in the past.

(a) Transmission

Send command [3][3] and data No. [1][0] to [1][9]. (Refer to Section 15.11.1.)

(b) Reply

The alarm No. corresponding to the data No. is provided.

(For example) AL.32: 0032 AL.50: 0050 AL_: 00FF (no alarm)

(2) Alarm occurrence time read

Read the occurrence time of alarm which occurred in the past.

The alarm occurrence time corresponding to the data No. is provided in terms of the total time beginning with operation start, with the minute unit omitted.

(a) Transmission

Send command [3][3] and data No. [2][0] to [2][9]. (Refer to Section 15.11.1.)

(b) Reply

The slave station returns the alarm occurrence time corresponding to the data No.

Alarm occurrence time is transferred in hexadecimal. Hexadecimal must be converted into decimal.

(For example)

Data "01F5" means that the alarm occurred 501 hours after start of operation.

(3) Reading the alarm name

Read the name of the past alarm.

(a) Transmission

Transmit command [3][3] + data No. [3][0] to [3][9]. (Refer to Section 15.11.1.)

(b) Reply

The slave station sends back the alarm name corresponding to the data No.

(4) Alarm history clear

Erase the alarm history. Transmit the following communication command:

Command	Data No.	Data
[8][2]	[2][0]	1EA5

15.12.10 Current alarm

(1) Current alarm No. read

Read the alarm No. which is occurring currently.

(a) Transmission

Send command [0][2] and data No. [0][0].

(b) Reply

The slave station sends back the alarm currently occurring.

Alarm No. is transferred in decimal.

(For example) AL.32: 0032 AL.50: 0050 AL_: 00FF (no alarm)

(2) Reading the concurrent alarm No.

Read the concurrent alarm No.

(a) Transmission

Transmit command [0][2] + data No. [0][8].

(b) Reply

The slave station sends back the concurrent alarm.

Alarm No. is transferred in decimal.

(3) Reading the current alarm name

Read the name of the current alarm.

(a) Transmission

Transmit command [0][2] + data No. [0][0].

(b) Reply

The slave station sends back the current alarm.

Name characters (10 digits)

(4) Reading the concurrent alarm name

Read the concurrent alarm name.

(a) Transmission

Transmit command [0][2] + data No. [0][9].

Command	Data No.	
[0][2]	[0][9]	

(b) Reply

The slave station sends back the concurrent alarm.

(5) Read of the status display at alarm occurrence

Read the status display data at alarm occurrence. When the data No. corresponding to the status display item is transmitted, the data value and data processing information are sent back.

(a) Transmission

Send command [3][5] and any of data No. [8][0] to [8][F] corresponding to the status display item to be read. (Refer to Section 15.11.1.)

(b) Reply

The slave station sends back the requested status display data at alarm occurrence.

(6) Current alarm clear

As by the entry of the RES signal, reset the servo amplifier alarm to make the servo amplifier ready to operate. After removing the cause of the alarm, reset the alarm with no command entered. Transmission

Command	Data No.	Data
[8][2]	[0][0]	1EA5

(7) Analog output of data before alarm occurrence

The status display at the time of alarm occurrence is output to pins 4, 3 of CN3 as an analog signal. Use parameter No. 46 to set the output item.

Transmit the following communication command:

Command	Data No.	Data
[8][2]	[2][0]	1EA5

15.12.11 Position block

(1) Reading of the settings

Read the position data, M code and speed block No.

(a) Transmission

Transmit the following communication commands (refer to Section 15.11.1):

Item	Command	Data No.
Position data	[4][0]	[0][0] to [F][F]
M code	[4][5]	[0][0] to [F][F]
Speed block No.	[4][A]	[0][0] to [F][F]

(b) Reply

The slave station returns the settings of the requested position block No.

(For example)

- Data "13F0BDC1" of position data indicates -9999.99.
- Data "10000063" of M code indicates 99.
- Data "10000005" of speed block No. indicates 5.
- (2) Reading of the position data unit

Read the unit of the position data.

(a) Transmission

Transmit command [4][3] + data No. [0][0].

(b) Reply

The slave station returns the unit of the position data.

(3) Reading of the setting ranges (upper and lower limit values)

Read the setting ranges of the position data, M code and speed block No.

(a) Transmission

Transmit the following communication commands (refer to Section 15.11.1):

Item	Command	Data No.
Position data setting range (upper limit value)	[4][1]	[0][0] to [F][F]
Position data setting range (lower limit value)	[4][2]	[0][0] to [F][F]
M code setting range (upper limit value)	[4][6]	[0][0] to [F][F]
M code setting range (lower limit value)	[4][7]	[0][0] to [F][F]
Speed block No. setting range (upper limit value)	[4][B]	[0][0] to [F][F]
Speed block No. setting range (lower limit value)	[4][C]	[0][0] to [F][F]

(b) Reply

The slave station returns the setting ranges in the requested position block No.

Data is transferred in hexadecimal.

(4) Writing of the settings

Write the position data, M code and speed block No. to the EEP-ROM of the servo amplifier. The set value can be written up to 100,000 times.

Transmit the following communication commands (refer to Section 15.11.2):

Item	Command	Data No.	Data
Position data	[C][0]	[0][0] to [F][F]	
M code	[C][2]	[0][0] to [F][F]	According to the following figure
Speed block No.	[C][4]	[0][0] to [F][F]	

Make the decimal point position equal to the feed length multiplying factor (STM) set in parameter No. 4. The slave station will not accept the decimal point position if the position specified is different from the STM setting. 15.12.12 Speed block

(1) Reading of the settings

Read the speed, acceleration time constant, deceleration time constant and S-pattern time constant. (a) Transmission

Transmit the following communication commands (refer to Section 15.11.1):

Item	Command	Data No.
Speed	[5][0]	[0][1] to [0][8]
Acceleration time constant	[5][4]	[0][1] to [0][8]
Deceleration time constant	[5][8]	[0][1] to [0][8]
S-pattern time constant	[5][C]	[0][1] to [0][8]

(b) Reply

The slave station returns the settings of the requested speed block No.

(2) Reading of the speed unit

Read the unit of the speed.

(a) Transmission

Transmit command [5][3] + data No. [2][0].

(b) Reply

The slave station returns the unit of the speed.

Unit characters (5 digits)

(3) Reading of the setting ranges (upper and lower limit values)

Read the setting ranges of the speed, acceleration time constant, deceleration time constant and Spattern time constant.

(a) Transmission

Transmit the following communication commands (refer to Section 15.11.1):

Item	Command	Data No.
Speed (upper limit value)	[5][1]	[0][1] to [0][8]
Speed (lower limit value)	[5][2]	[0][1] to [0][8]
Acceleration time constant (upper limit value)	[5][5]	[0][1] to [0][8]
Acceleration time constant (lower limit value	[5][6]	[0][1] to [0][8]
Deceleration time constant (upper limit value)	[5][8]	[0][1] to [0][8]
Deceleration time constant (lower limit value)	[5][9]	[0][1] to [0][8]
S-pattern time constant (upper limit value)	[5][D]	[0][1] to [0][8]
S-pattern time constant (lower limit value)	[5][E]	[0][1] to [0][8]

(b) Reply

The slave station returns the setting ranges in the requested speed block No.

Data is transferred in hexadecimal.

(4) Writing of the settings

Write the speed, acceleration time constant, deceleration time constant and S-pattern time constant to the EEP-ROM of the servo amplifier.

The set value can be written up to 100,000 times.

Transmit the following communication commands (refer to Section 15.11.2):

Item	Command	Data No.	Data
Speed	[C][6]	[0][1] to [0][8]	
Acceleration time constant	[C][7]	[0][1] to [0][8]	
Deceleration time constant	[C][8]	[0][1] to [0][8]	According to the following figure
S-pattern time constant	[C][9]	[0][1] to [0][8]	

15.12.13 Selection between Japanese and English

The characters representing the names of the status displays, parameters, etc. may be displayed in either Japanese or English.

Transmit the following communication command:

Command	Data No.	Data
[8][0]	[0][0]	0000: Japanese 0001: English

16. COMPLIANCE WITH THE EUROPEAN EC DIRECTIVES AND UL/C-UL STANDARD

16. COMPLIANCE WITH THE EUROPEAN EC DIRECTIVES AND UL/C-UL STANDARD

POINT

• The EN • UL/C-UL Standard-compliant products are scheduled for release. The standard products are incompliant.

16.1 Compliance with EC directives

16.1.1 What are EC directives?

The EC Directives were issued to standardize the regulations of the EU countries and ensure smooth distribution of safety-guaranteed products. In the EU countries, the Machinery Directive (effective in January, 1995), EMC Directive (effective in January, 1996) and Low Voltage Directive (effective in January, 1997) of the EC Directives require that products to be sold should meet their fundamental safety requirements and carry the CE marks (CE marking). CE marking applies to machines and equipment into which servo amplifiers have been installed.

(1) EMC directive

The EMC directive applies not to the servo units alone but to servo-incorporated machines and equipment. This requires the EMC filters to be used with the servo-incorporated machines and equipment to comply with the EMC directive. For specific EMC directive conforming methods, refer to the EMC Installation Guidelines (IB(NA)67310).

This servo is certified by TUV, third-party assessment organization, to comply with the EMC directive in the conforming methods of the EMC Installation Guidelines.

(2) Low voltage directive

The low voltage directive applies also to servo units alone. Hence, they are designed to comply with the low voltage directive.

This servo is certified by TUV, third-party assessment organization, to comply with the low voltage directive.

(3) Machine directive

Not being machines, the servo amplifiers need not comply with this directive.

- 16.1.2 For compliance
- (1) Servo amplifiers and servo motors used

Use the servo amplifiers and servo motors which comply with the EN Standard.

Servo amplifier series	:	MR-H10TN-UE to MR-H22KTN-UE (Scheduled for release)
Servo motor series	:	HA-LHD-EC
		HC-MF□-UE
		HA-FF□C-UE
		HC-SF□
		HC-RF□
		HC-UF□

The handling, performance, specifications and other information of the EN Standard-compliant models are the same as those of the standard models unless otherwise specified.

16. COMPLIANCE WITH THE EUROPEAN EC DIRECTIVES AND UL/C-UL STANDARD

(2) Structure

(3) Environment

Operate the servo amplifier at or above the contamination level 2 set forth in IEC664. For this purpose, install the servo amplifier in a control box which is protected against water, oil, carbon, dust, dirt, etc. (IP54).

- (4) Power supply
 - (a) Operate the servo amplifier to meet the requirements of the overvoltage category II set forth in IEC664. For this purpose, a reinforced insulating transformer conforming to the IEC or EN Standard should be used in the power input section.
 - (b) When supplying interface power from external, use a 24VDC power supply which has been insulation-reinforced in I/O.
- (5) Wiring
 - (a) The cables to be connected to the terminal block of the servo amplifier must have crimping terminals provided with insulating tubes to prevent contact with adjacent terminals.

(b) Use a fixed terminal block to connect the power supply lead of the servo motor to the servo amplifier. Do not connect cables directly.

- (c) Use the servo motor side power connector which complies with the EN Standard. The EN Standard-compliant power connector sets are available from us as options. (Refer to Section 14.1.6.)
- (6) Noise reduction techniques

Use the EMC filter for noise reduction. The radio noise filter (FR-BIF) is not required. For the way the servo amplifier should comply with the EMC Directives, refer to "EMC INSTALLATION GUIDELINES".

(7) Grounding

serve amplifier must be connected to the protective earth (PE) of the control box	 Securely ground the servo amplifier and servo motor. To prevent an electric shock, the protective earth (PE) terminal (marked) of the
	servo amplifier must be connected to the protective earth (PE) of the control box.

The servo amplifier switches the power transistor to supply power to the servo motor. Depending on the routing of the wiring and ground cables, the servo amplifier may be affected by the switching noises (due to di/dt and dv/dt) of the transistor.

To prevent such a fault, refer to the following diagram and securely ground the servo amplifier and servo motor.

Even when a leakage current breaker is used, always earth the protective earth (PE) terminal of the servo amplifier to prevent an electric shock.

Note: 1. Do not connect two ground cables to the same protective earth (PE) terminal as shown at right below. Always connect cables to the terminals one-to-one as shown at left:

2. For the grounding of the control box, refer to EN60204.

16. COMPLIANCE WITH THE EUROPEAN EC DIRECTIVES AND UL/C-UL STANDARD

(8) Cables, No-Fuse Breakers, Magnetic Contactors, Power Factor Improving Reactors Always use the EN/IEC Standard compliant products specified in Chapter 14.
And the cable sizes listed in Section 14.2.1 are used under the following conditions.
When the cables are used under the conditions other than the following, refer to table 5 and Appendix C in EN60204 - 1.

Item	Description	
Ambient temperature	40°C	
Sheath	PVC (polyvinyl chloride)	
Installation method	Run on wall surface or in open	
	cable tray	

(9) Performing EMC tests

When EMC tests are run on a machine/device into which the servo amplifier has been installed, it must conform to the electromagnetic compatibility (immunity/emission) standards after it has satisfied the operating environment/electrical equipment specifications. For the way of dealing with the EMC Directive on servo amplifiers, refer to the "EMC INSTALLATION GUIDELINES".

16.1.3 Standard connection examples

(1) Positioning system

For the notes, refer to the next page.

16. COMPLIANCE WITH THE EUROPEAN EC DIRECTIVES AND UL/C-UL STANDARD

- Note: 1. Connect the diode in the correct orientation. If the diode is reversed, a fault will occur and signals not output, and the forced stop and other protective circuits may be disabled.
 - 2. Connect the regenerative brake option across terminals P-C after disconnecting the leads of the built-in regenerative brake resistor from P-C
 - 3. The forced stop switch must be installed.
 - 4. Make up a power circuit which will switch off the magnetic contactor after detection of alarm occurrence.
 - 5. Always connect VDD-VIN externally.
 - 6. Use a 24VDC power supply which has been insulation-reinforced in I/O.
 - 7. Change the setting of parameter No.52 to "
 - 8. Can be used as the CN1 external input signals by setting of parameter No. 66.
 - 9. Can be used as the CN1 external input signals in the initial status of parameter No. 66.
 - 10. Cannot be used when 2 stations are occupied.
 - 11. Change the setting of parameter No.44 to "
 - 12. Change the setting of parameter No.3 to "
 11
 "
 to use CPO as an electromagnetic brake interlock or the setting of parameter No.44 to "
 11
 "
 to use CPO as a torque limit-in-progress.
 - 13. At a normal time when no alarm has occurred, ALM-SG are conducting.
 - 14. The HC-MF-UE series servo motor is connected. For connection details of the other servo motors, refer to Section 6.4.
 - 15. The upper limit of the overriding speed is the permissible speed.

(2) Roll feeding system

For the notes, refer to the next page.
- Note: 1. Connect the diode in the correct orientation. If the diode is reversed, a fault will occur and signals not output, and the forced stop and other protective circuits may be disabled.
 - 2. Connect the regenerative brake option across terminals P-C after disconnecting the leads of the built-in regenerative brake resistor from P-C
 - 3. The forced stop switch must be installed.
 - 4. Make up a power circuit which will switch off the magnetic contactor after detection of alarm occurrence.
 - 5. Always connect VDD-VIN externally.
 - 6. Use a 24VDC power supply which has been insulation-reinforced in I/O.
 - 7. Change the setting of parameter No.52 to "
 - 8. Can be used as the CN1 external input signals by setting of parameter No. 66.
 - 9. Cannot be used when 2 stations are occupied.
 - 10. Change the setting of parameter No.3 to " 11" to use CPO as an electromagnetic brake interlock or the setting of parameter No.44 to " 11" 1" to use CPO as a torque limit-in-progress.
 - 11. At a normal time when no alarm has occurred, ALM-SG are conducting.
 - 12. The HC-MF-UE series servo motor is connected. For connection details of the other servo motors, refer to Section 6.4.
 - 13. The upper limit of the overriding speed is the permissible speed.

16.2 Conformance with UL/C-UL standard

16.2.1 Servo amplifier and servo motor used

Use the UL/C-UL Standard-compliant model of servo amplifier and servo motor. The 11kW and higher servo amplifiers will be certified by the UL/C-UL Standard soon, and the UL/C-UL Standard-compliant models of the HA-LH702 to HA-LH22K2 will be released soon.

Servo amplifier series	: MR-H10TN-UE to MR-H700TN-UE (Scheduled for release)
Servo motor series	: HC-MF□-UE
	HA-FF□C-UE
	HC-SF□
	HC-RF□
	HC-UF□

Unless otherwise specified, the handling, performance, specifications, etc. of the UL/C-UL Standardcompliant models are the same as those of the standard models.

When using the options and auxiliary equipment, use those which conform to the UL/C-UL Standard. To comply with the UL/C-UL Standard, strictly observe the following:

16.2.2 Installation

Install a fan of 100CFM air flow 10.16[cm] (4[in.]) above the servo amplifier or provide cooling of at least equivalent capability to ensure that the ambient temperature conforms to the environment conditions.

16.2.3 Power supply

(1) Short circuit rating

Having been subjected to UL tests in the alternating-current circuit whose peak current is limited to 5000A or less, this servo amplifier conforms to this circuit.

(2) Capacitor discharge time

The capacitor discharge time exceeds 1 minute. To ensure safety, do not touch the charging section for 10 minutes after power-off.

16.2.4 Crimping terminals and crimping tools

When connecting the wires to the terminal block, always use AMP's crimping terminals specified in this section or UL Standard-compliant products.

For symbols a to e in the list, refer to the table at right.

	Crimping terminals, crimping tools			
Servo amplifier	L1 • L2 • L3	U • V • W • 🖨	L11 • L21	P∙C
MR-H10TN-UE	а	а	а	а
MR-H20TN-UE	а	а	а	а
MR-H40TN-UE	а	а	а	а
MR-H60TN-UE	а	а	а	а
MR-H100TN-UE	а	а	а	а
MR-H200TN-UE	b	b	а	а
MR-H350TN-UE	b	b	а	а
MR-H500TN-UE	b	b	с	а
MR-H700TN-UE	e	e	d	d

	(Note) Type		
Symbol	Crimping terminals	Crimping tools	
а	32959	47387	
b	32968	59239	
с	32957	47387	
d	171517-1	59239	
е	322128	59974-1 (body) 48752-0 (dies)	
f	52042	69040 (body) 69066 (head) 48859 (dies)	
g	322153	59974-1 (body) 48753-0 (dies)	

Note: AMP make

16.2.5 Fuses

When using a fuse instead of the no-fuse breaker, use the one which has the specifications given in this section.

0 ""		Fuse	
Servo amplifier	Class	Current [A]	Voltage
MR-H10TN-UE	К5	10	
MR-H20TN-UE	К5	10	
MR-H40TN-UE	К5	15	
MR-H60TN-UE	К5	20	
MR-H100TN-UE	К5	25	250VAC
MR-H200TN-UE	К5	40	
MR-H350TN-UE	K5 or H	70	
MR-H500TN-UE	K5 or H	125	
MR-H700TN-UE	K5 or H	150	

16.2.6 Terminal block tightening torque

The following torques are recommended to tighten screws to the terminal blocks. For the screw size of each terminal block, refer to Section 12.1.

Screw size		M3.5	M4	M5	M6
Recommended tightening torque	[N • m]	0.8	1.2	2.0	2.5
value	[lb • in.]	8	11	20	24

16.2.7 Standard connection example

Same as in Section 16.1.3.

16.3 Signals

16.3.1 Main circuit terminal block

Note that the power supply symbols of the MR-H \Box TN-UE given on the terminal block are different from those of the standard models. What the symbols R, S, T, R1 and S1 used in other than this chapter indicate are the same as what L1, L2, L3, L11 and L21 indicate.

Circol nome	Power supply symbols		
Signarhame	MR-H□TN	MR-H□TN-UE	
Main circuit power supply	R • S • T	L1 • L2 • L3	
Control circuit power supply	R1 • S1	L11 • L21	

The position and signal arrangement of the terminal block depend on the servo amplifier capacity. Refer to Section 12.1.

Symbol	Signal	Description
L1, L2, L3	Main circuit power supply	Connect a three-phase 200 to 230VAC, 50/60Hz power supply to L1, L2, L3. But, for MR-H700TN-UE or more, the voltage of 50Hz power is 200 to 220V.
U, V, W	Servo motor output	Connect to the servo motor power supply terminals (U, V, W).
L11, L21	Control circuit power supply	L11 and L21 should be in phase with L1 and L2, respectively. Connect a single-phase 200 to 230VAC, 50/60Hz power supply. But, for MR-H700TN-UE or more, the voltage of 50Hz power is 200 to 220V.
P, C, D	Regenerative brake	In the MR-H-400TN-UE to MR-H700TN-UE, the built-in regenerative brake resistor is factory-connected across P-C. When using the regenerative brake option, brake unit or power return converter, always connect it after removing the wiring of the built-in regenerative brake resistor connected across P-C. For MR-H11KTN-UE or more, always connect the supplied regenerative brake resistor across P-C.
MS1 • MS2	Servo motor fan	Connect to the cooling fan which is built in the HA-LH11K2-EC to HA-LH22K2-EC servo motors. Provided for the servo amplifiers of MR-H11KTN-UE or more.
	Grounding	Connect this terminal to the protective earth (PE) terminals of the servo motor and control box for grounding.

16.3.2 Interfaces

(1) Digital input interface DI-1

Always use an external power supply.

Provide a signal using a relay or open collector transistor.

(2) Digital output interface DO-1

Always use an external power supply.

Can drive a lamp, relay or photocoupler. Provide absorbers (D, C) for an inductive load or an inrush current suppressing resister (R) for a lamp load. (Permissible current: 50mA or less, inrush current: 100mA or less)

- Inductive load

Lamp load

- (3) Pulse train input interface DI-2(a) Open collector system
- Interface example

- (b) Differential line driver system
- Interface example

tLH=tHL<0.1μs tc>1μs tF<3μs

MEMO

APPENDICES

Appendix 1 Point table data recording forms

(1) Position blocks

1) 256-positions (positioning)

No. Posses and the second is a second	Position block	Position data	M code	Speed block
0	No.	r ookion data	in codo	No.
1 $ 2 . . 3 . . 3 . . 3 . . 3 . . 6 . . 7 . . 8 . . 9 . . 10 . . 11 . . 12 . . 13 . . 14 . . 15 . . 16 . . 17 . . 18 . . 19 . . 20 . . 21 . . 22 . . 23 . . 24 . . 25 . . 30 . . 31 . . 32 . .$	0			
2	1			
3	2			
4 5 6 7 8 9 10 11 12 13 13 14 15 16 17 18 19 20 21 22 23 26 27 30 31 32 33 36 37	3			
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 27 28 30 31 32 33 34 37 38	4			
6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 30 31 32 33 34 37 38 399	5			
7 8 $$	6			
8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 40 <	7			
9	8			
10	9			
11	10			
12	11			
13	12			
14	13			
15	14			
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	15			
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 40 41 42 43 44 44 46	16			
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	17			
19	18			
20 21 21 22 23 23 24 25 26 25 26 27 28 29 30 31 32 33 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44 44 45 46 47 48	19			
21	20			
22 23 23 24 25 26 26 27 28 29 30 31 31 31 32 33 33 31 32 33 33 31 32 33 33 31 32 33 33 31 34 35 36 31 37 38 39 40 41 41 42 43 44 44 44 44 44 44 45 46 47 48 49 49	21			
23 24 24 $$	22			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20			
26	25			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	20			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30 21			
32	31 22			<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ుడ 20			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>აა</u> ექ			<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	34 25			
30 37 37 38 38 39 40 40 41 40 42 41 43 44 44 45 46 47 48 49	<u>ა</u> ე			<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	30 97			<u> </u>
30 39 40 40 41 41 42 41 43 44 44 45 46 47 48 49	<u>3/</u>			<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u>ა</u> გ			<u> </u>
40 41 41 42 42 43 43 44 44 45 45 46 47 48 49 49	39			
41 42 42 43 43 44 44 45 45 46 47 48 49 49	40			
42 43 43 44 44 45 45 46 47 48 49 49	41]
43	42]
44	43]
45	44			
46	45		l	ļ]
47	46			
48	47			
49	48			
	49			

Position block	Position data	M code	Speed block
No.	F USILIOIT UALA	IVI CODE	No.
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			
71			
72			
73			
74			
75			
76			
77			
78			
79			
80			
81			
82			
83			
84			
85			
86			
<u> 8/</u>			
<u>80</u>			
09			
90			
91			
32			
93			
94			
90			
07			
08			
00			
33	1	1	1

Position block	Position data	M code	Speed block
No.	F USILIUTI UALA	WI COde	No.
100			
101			
102			
103			
104			
105			
106			
107			
108			
109			
110			
111			
112			
113			
114			
115			
116			
117			
118			
119			
120			
121			
122			
123			
124			
125			
126			
127			
128			
129			
130			
131			
132			
133			
134			
135			
136			
137			
138			
139			
140			
141			
142			
143			
144			
145			
146			
147			
148			
149			

Position block			Spood block
No	Position data	M code	No
150			INO.
150			
151			
152			
153			
154			
155			
156			
157			
158			
159			
160			
161			
162			
163		<u> </u>	<u> </u>
164			
165			
166			
167			
168			
169			
170			
171			
172			
173			
174			
175			
176			
177			
178			
179			
180			
181			
182			
183			
184			
185			
186			
187			
188			
189			
190			
101			
102			
102			
193			
105			
100			
190			
197			
190			
199		1	1

Position block			Speed block
	Position data	M code	No
200			110.
200			
202			
203			
204			
205			
206			
207			
208			
209			
210			
211			
212			
213			
214			
215			
216			
217			
218			
219			
220			
221			
222			
223			
220			
225			
226			
22.0			
228			
229			
230			
231			
232			
233			
234			
235			
236			
237			
238			
239			
240			
241			
242			
243			
244			
245			
246			
247			
248			
249			

Position block No.	Position data	M code	Speed block No.
250			
251			
252			
253			
254			
255			

2) 8-positions (positioning)

Position block No.	Position data	M code	Speed block No.
0			
1			
2			
3			
4			
5			
6			
7			

3) 2-positions (roll feeding)

Position block No.	Position data
0	
1	

(2) Speed blocks

1) 8 speeds (positioning - roll feeding)

Speed block No.	Speed (r/min)	Acceleration time constant (ms) or acceleration/ deceleration time constant (ms)	Deceleration time constant (ms) or S-shape time constant (ms)
1			
2			
3			
4			
5			
6			
7			
8			

2) 2 speeds (roll feeding)

Speed block No.	Speed (r/min)	Acceleration time constant (ms) or acceleration/ deceleration time constant (ms)	Deceleration time constant (ms) or S-shape time constant (ms)
1			
2			

Appendix 2 Joint terminal block (MR-TB50) terminal block labels

For positioning system

			+7				+7
	67	SD	10		67	SD	VC
	84		53		0+		53
	01		22		ov		52
	74	ЧP	12		74	ЧP	12
Ċ	97	s TL	07	ŋ	97	2 T	50
5R	945	OVF	00	5R	94	OVF	
۲ ۳	74	ŋ	61	B Z	44	ŋ	61
ЦЦ	<u>C</u> +	ŋ	۶۱	ΕP	05	ŋ	81
FPA	21	ZR	۲۱	FPA	21	ZR	2١
Ы	45	R L	9١	Ľ	45	R L	9١
В	14	2 LE	<u>ا</u> و	LB	41	E S	91
٩	40	LAF		Ą	40	LAF	
5R L	68	Р	~	5R L	68	Р	11
<u><u> </u></u>	38	ГG	13	PIE	85	ŋ	13
ST2		ST1	15	ST2	00	ST1	15
STP	28	RG.	11	STP	26	с С С	11
MD0	36	1G O	٥١	MD0	98	0 0	10
NLM	32	ЫN	6	١LM	32	≥ Ш	6
4 4	34	ZP	0	₹ −	34	ZP	
∠ 0	33	СРО	8	≤ 0	33	CPO	8
ă	75	LSN	٢	ā	75	LSN	۷
LSF		DI2	9	LSF		712	9
<u> </u>	15	NC	9	<u>D</u> 1	15	NC	S
SG	30	й N	4	SG	30	й Z	4
SG	50		3	SG	50	1	3
0	82	VDL	-	0	82	VDL	
Ż O	72	SG	2	Ż	72	S C	2
PR	07	SG	٢	PR	07	S C	١
ğ	30	SD	0	Dog	90	2D ZD	0
VDD	55	-		VDD	55	-	
				 .			j

	67	SD	24		67	SD	54
	01		53		07		53
1	84		52		84		52
	L4	•	17		Z4	•	
	97	TLAF	10		97	TLAF	10
	~-	JVR	50	C L	~	JVR	50
N15F	9V	ს ს	6١	N15F	чv	ს ე	6١
BB i	44		۶٢	FPB	44		81
A A	43	Ū L		A Ac	43	۳ ۲	
	75	LZR	21	Ē	45	LZR	21
Ы		BR	9١	ΓZ		BR	9١
В	14	R L	۶L	В	14	R L	91
٩ (40	LA	14	٩	40	LA	71
К С	36	ОР		SR	68	ЧО	
Ĕ	95	ŋ	51	Ę	85	ŋ	51
ST2		T1	15	ST2	00	T1	21
MD2	75	500	11	MD2	75	5	11
	98	MD	01	DO	98	MD	01
≥ ∑	35	EMG	01	≥ ∑	32	EMG	01
AL	-24	ZP	6	AL	+c	ZP	6
ЧN	10	РО	8	ЧN	10	0	8
DEC	33	2 C	Z	DEC	33	2 C	Z
	32	PS	0		32	PS	0
່ ທ	31	STP	3	' ິ	31	STP	3
<u>۳</u>	nc	SON	G	Ч	00	SON	G
S S G	00	Z	4	SG	00	Z	4
SG	56	> D	3	SG	50	> 0	3
0	82	Ŋ	7	0	82	٧D	_
Z o	72	SG	6	z o	22	S G	2
A A	~ 7	SG	٢	ЪŖ	07	SG	١
R S	90	Q	0	SS	96	Q	0
VDD	52	Ľ		VDD	52	æ	
-		 		-		 	

For roll feeding system

MEMO

REVISIONS

*The manual number is given on the bottom left of the back cover.

Print data	*Manual number	Revision
Feb, 2001	SH(NA)3207-A	First edition